Metamath Proof Explorer


Theorem elocv

Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v V=BaseW
ocvfval.i ,˙=𝑖W
ocvfval.f F=ScalarW
ocvfval.z 0˙=0F
ocvfval.o ˙=ocvW
Assertion elocv A˙SSVAVxSA,˙x=0˙

Proof

Step Hyp Ref Expression
1 ocvfval.v V=BaseW
2 ocvfval.i ,˙=𝑖W
3 ocvfval.f F=ScalarW
4 ocvfval.z 0˙=0F
5 ocvfval.o ˙=ocvW
6 elfvdm A˙SSdom˙
7 n0i A˙S¬˙S=
8 fvprc ¬WVocvW=
9 5 8 eqtrid ¬WV˙=
10 9 fveq1d ¬WV˙S=S
11 0fv S=
12 10 11 eqtrdi ¬WV˙S=
13 7 12 nsyl2 A˙SWV
14 1 2 3 4 5 ocvfval WV˙=s𝒫VyV|xsy,˙x=0˙
15 13 14 syl A˙S˙=s𝒫VyV|xsy,˙x=0˙
16 15 dmeqd A˙Sdom˙=doms𝒫VyV|xsy,˙x=0˙
17 1 fvexi VV
18 17 rabex yV|xsy,˙x=0˙V
19 eqid s𝒫VyV|xsy,˙x=0˙=s𝒫VyV|xsy,˙x=0˙
20 18 19 dmmpti doms𝒫VyV|xsy,˙x=0˙=𝒫V
21 16 20 eqtrdi A˙Sdom˙=𝒫V
22 6 21 eleqtrd A˙SS𝒫V
23 22 elpwid A˙SSV
24 1 2 3 4 5 ocvval SV˙S=yV|xSy,˙x=0˙
25 24 eleq2d SVA˙SAyV|xSy,˙x=0˙
26 oveq1 y=Ay,˙x=A,˙x
27 26 eqeq1d y=Ay,˙x=0˙A,˙x=0˙
28 27 ralbidv y=AxSy,˙x=0˙xSA,˙x=0˙
29 28 elrab AyV|xSy,˙x=0˙AVxSA,˙x=0˙
30 25 29 bitrdi SVA˙SAVxSA,˙x=0˙
31 23 30 biadanii A˙SSVAVxSA,˙x=0˙
32 3anass SVAVxSA,˙x=0˙SVAVxSA,˙x=0˙
33 31 32 bitr4i A˙SSVAVxSA,˙x=0˙