Description: Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ocvfval.v | |
|
ocvfval.i | |
||
ocvfval.f | |
||
ocvfval.z | |
||
ocvfval.o | |
||
Assertion | elocv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvfval.v | |
|
2 | ocvfval.i | |
|
3 | ocvfval.f | |
|
4 | ocvfval.z | |
|
5 | ocvfval.o | |
|
6 | elfvdm | |
|
7 | n0i | |
|
8 | fvprc | |
|
9 | 5 8 | eqtrid | |
10 | 9 | fveq1d | |
11 | 0fv | |
|
12 | 10 11 | eqtrdi | |
13 | 7 12 | nsyl2 | |
14 | 1 2 3 4 5 | ocvfval | |
15 | 13 14 | syl | |
16 | 15 | dmeqd | |
17 | 1 | fvexi | |
18 | 17 | rabex | |
19 | eqid | |
|
20 | 18 19 | dmmpti | |
21 | 16 20 | eqtrdi | |
22 | 6 21 | eleqtrd | |
23 | 22 | elpwid | |
24 | 1 2 3 4 5 | ocvval | |
25 | 24 | eleq2d | |
26 | oveq1 | |
|
27 | 26 | eqeq1d | |
28 | 27 | ralbidv | |
29 | 28 | elrab | |
30 | 25 29 | bitrdi | |
31 | 23 30 | biadanii | |
32 | 3anass | |
|
33 | 31 32 | bitr4i | |