Metamath Proof Explorer


Theorem eloprab1st2nd

Description: Reconstruction of a nested ordered pair in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Assertion eloprab1st2nd A x y z | φ A = 1 st 1 st A 2 nd 1 st A 2 nd A

Proof

Step Hyp Ref Expression
1 eqeq1 w = A w = x y z A = x y z
2 1 anbi1d w = A w = x y z φ A = x y z φ
3 2 3exbidv w = A x y z w = x y z φ x y z A = x y z φ
4 df-oprab x y z | φ = w | x y z w = x y z φ
5 3 4 elab2g A x y z | φ A x y z | φ x y z A = x y z φ
6 5 ibi A x y z | φ x y z A = x y z φ
7 id A = x y z A = x y z
8 opex x y V
9 vex z V
10 8 9 op1std A = x y z 1 st A = x y
11 10 fveq2d A = x y z 1 st 1 st A = 1 st x y
12 vex x V
13 vex y V
14 12 13 op1st 1 st x y = x
15 11 14 eqtr2di A = x y z x = 1 st 1 st A
16 10 fveq2d A = x y z 2 nd 1 st A = 2 nd x y
17 12 13 op2nd 2 nd x y = y
18 16 17 eqtr2di A = x y z y = 2 nd 1 st A
19 15 18 opeq12d A = x y z x y = 1 st 1 st A 2 nd 1 st A
20 8 9 op2ndd A = x y z 2 nd A = z
21 20 eqcomd A = x y z z = 2 nd A
22 19 21 opeq12d A = x y z x y z = 1 st 1 st A 2 nd 1 st A 2 nd A
23 7 22 eqtrd A = x y z A = 1 st 1 st A 2 nd 1 st A 2 nd A
24 23 adantr A = x y z φ A = 1 st 1 st A 2 nd 1 st A 2 nd A
25 24 exlimiv z A = x y z φ A = 1 st 1 st A 2 nd 1 st A 2 nd A
26 25 exlimivv x y z A = x y z φ A = 1 st 1 st A 2 nd 1 st A 2 nd A
27 6 26 syl A x y z | φ A = 1 st 1 st A 2 nd 1 st A 2 nd A