Metamath Proof Explorer


Theorem elpaddri

Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddfval.l ˙=K
paddfval.j ˙=joinK
paddfval.a A=AtomsK
paddfval.p +˙=+𝑃K
Assertion elpaddri KLatXAYAQXRYSAS˙Q˙RSX+˙Y

Proof

Step Hyp Ref Expression
1 paddfval.l ˙=K
2 paddfval.j ˙=joinK
3 paddfval.a A=AtomsK
4 paddfval.p +˙=+𝑃K
5 simp3l KLatXAYAQXRYSAS˙Q˙RSA
6 simp2l KLatXAYAQXRYSAS˙Q˙RQX
7 simp2r KLatXAYAQXRYSAS˙Q˙RRY
8 simp3r KLatXAYAQXRYSAS˙Q˙RS˙Q˙R
9 oveq1 q=Qq˙r=Q˙r
10 9 breq2d q=QS˙q˙rS˙Q˙r
11 oveq2 r=RQ˙r=Q˙R
12 11 breq2d r=RS˙Q˙rS˙Q˙R
13 10 12 rspc2ev QXRYS˙Q˙RqXrYS˙q˙r
14 6 7 8 13 syl3anc KLatXAYAQXRYSAS˙Q˙RqXrYS˙q˙r
15 ne0i QXX
16 ne0i RYY
17 15 16 anim12i QXRYXY
18 17 anim2i KLatXAYAQXRYKLatXAYAXY
19 18 3adant3 KLatXAYAQXRYSAS˙Q˙RKLatXAYAXY
20 1 2 3 4 elpaddn0 KLatXAYAXYSX+˙YSAqXrYS˙q˙r
21 19 20 syl KLatXAYAQXRYSAS˙Q˙RSX+˙YSAqXrYS˙q˙r
22 5 14 21 mpbir2and KLatXAYAQXRYSAS˙Q˙RSX+˙Y