Metamath Proof Explorer


Theorem elpell1234qr

Description: Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion elpell1234qr DAPell1234QRDAzwA=z+Dwz2Dw2=1

Proof

Step Hyp Ref Expression
1 pell1234qrval DPell1234QRD=a|zwa=z+Dwz2Dw2=1
2 1 eleq2d DAPell1234QRDAa|zwa=z+Dwz2Dw2=1
3 eqeq1 a=Aa=z+DwA=z+Dw
4 3 anbi1d a=Aa=z+Dwz2Dw2=1A=z+Dwz2Dw2=1
5 4 2rexbidv a=Azwa=z+Dwz2Dw2=1zwA=z+Dwz2Dw2=1
6 5 elrab Aa|zwa=z+Dwz2Dw2=1AzwA=z+Dwz2Dw2=1
7 2 6 bitrdi DAPell1234QRDAzwA=z+Dwz2Dw2=1