Metamath Proof Explorer


Theorem elpotr

Description: A class of transitive sets is partially ordered by _E . (Contributed by Scott Fenton, 15-Oct-2010)

Ref Expression
Assertion elpotr zATrzEPoA

Proof

Step Hyp Ref Expression
1 alral yxyyzxzyAxyyzxz
2 1 alimi xyxyyzxzxyAxyyzxz
3 alral xyAxyyzxzxAyAxyyzxz
4 2 3 syl xyxyyzxzxAyAxyyzxz
5 4 ralimi zAxyxyyzxzzAxAyAxyyzxz
6 ralcom zAxAyAxyyzxzxAzAyAxyyzxz
7 ralcom zAyAxyyzxzyAzAxyyzxz
8 7 ralbii xAzAyAxyyzxzxAyAzAxyyzxz
9 6 8 bitri zAxAyAxyyzxzxAyAzAxyyzxz
10 5 9 sylib zAxyxyyzxzxAyAzAxyyzxz
11 dftr2 Trzxyxyyzxz
12 11 ralbii zATrzzAxyxyyzxz
13 df-po EPoAxAyAzA¬xExxEyyEzxEz
14 epel xEyxy
15 epel yEzyz
16 14 15 anbi12i xEyyEzxyyz
17 epel xEzxz
18 16 17 imbi12i xEyyEzxEzxyyzxz
19 elirrv ¬xx
20 epel xExxx
21 19 20 mtbir ¬xEx
22 21 biantrur xEyyEzxEz¬xExxEyyEzxEz
23 18 22 bitr3i xyyzxz¬xExxEyyEzxEz
24 23 ralbii zAxyyzxzzA¬xExxEyyEzxEz
25 24 2ralbii xAyAzAxyyzxzxAyAzA¬xExxEyyEzxEz
26 13 25 bitr4i EPoAxAyAzAxyyzxz
27 10 12 26 3imtr4i zATrzEPoA