Description: A subset of a set is an element of the power set of the difference of the set with a singleton if the subset does not contain the singleton element. (Contributed by AV, 10-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elpwdifsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | 1 | sselda | |
3 | df-nel | |
|
4 | 3 | biimpi | |
5 | 4 | 3ad2ant3 | |
6 | 5 | anim1ci | |
7 | nelne2 | |
|
8 | 6 7 | syl | |
9 | eldifsn | |
|
10 | 2 8 9 | sylanbrc | |
11 | 10 | ex | |
12 | 11 | ssrdv | |
13 | elpwg | |
|
14 | 13 | 3ad2ant1 | |
15 | 12 14 | mpbird | |