Metamath Proof Explorer


Theorem elrefsymrels2

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 22-Jul-2019)

Ref Expression
Assertion elrefsymrels2 RRefRelsSymRelsIdomRRR-1RRRels

Proof

Step Hyp Ref Expression
1 refsymrels2 RefRelsSymRels=rRels|Idomrrr-1r
2 dmeq r=Rdomr=domR
3 2 reseq2d r=RIdomr=IdomR
4 id r=Rr=R
5 3 4 sseq12d r=RIdomrrIdomRR
6 cnveq r=Rr-1=R-1
7 6 4 sseq12d r=Rr-1rR-1R
8 5 7 anbi12d r=RIdomrrr-1rIdomRRR-1R
9 1 8 rabeqel RRefRelsSymRelsIdomRRR-1RRRels