Metamath Proof Explorer


Theorem elspansn2

Description: Membership in the span of a singleton. All members are collinear with the generating vector. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn2 ABB0AspanBA=AihBBihBB

Proof

Step Hyp Ref Expression
1 spansn BspanB=B
2 1 eleq2d BAspanBAB
3 2 3ad2ant2 ABB0AspanBAB
4 eleq1 A=ifAA0ABifAA0B
5 id A=ifAA0A=ifAA0
6 oveq1 A=ifAA0AihB=ifAA0ihB
7 6 oveq1d A=ifAA0AihBBihB=ifAA0ihBBihB
8 7 oveq1d A=ifAA0AihBBihBB=ifAA0ihBBihBB
9 5 8 eqeq12d A=ifAA0A=AihBBihBBifAA0=ifAA0ihBBihBB
10 4 9 bibi12d A=ifAA0ABA=AihBBihBBifAA0BifAA0=ifAA0ihBBihBB
11 10 imbi2d A=ifAA0B0ABA=AihBBihBBB0ifAA0BifAA0=ifAA0ihBBihBB
12 neeq1 B=ifBB0B0ifBB00
13 sneq B=ifBB0B=ifBB0
14 13 fveq2d B=ifBB0B=ifBB0
15 14 fveq2d B=ifBB0B=ifBB0
16 15 eleq2d B=ifBB0ifAA0BifAA0ifBB0
17 oveq2 B=ifBB0ifAA0ihB=ifAA0ihifBB0
18 oveq1 B=ifBB0BihB=ifBB0ihB
19 oveq2 B=ifBB0ifBB0ihB=ifBB0ihifBB0
20 18 19 eqtrd B=ifBB0BihB=ifBB0ihifBB0
21 17 20 oveq12d B=ifBB0ifAA0ihBBihB=ifAA0ihifBB0ifBB0ihifBB0
22 id B=ifBB0B=ifBB0
23 21 22 oveq12d B=ifBB0ifAA0ihBBihBB=ifAA0ihifBB0ifBB0ihifBB0ifBB0
24 23 eqeq2d B=ifBB0ifAA0=ifAA0ihBBihBBifAA0=ifAA0ihifBB0ifBB0ihifBB0ifBB0
25 16 24 bibi12d B=ifBB0ifAA0BifAA0=ifAA0ihBBihBBifAA0ifBB0ifAA0=ifAA0ihifBB0ifBB0ihifBB0ifBB0
26 12 25 imbi12d B=ifBB0B0ifAA0BifAA0=ifAA0ihBBihBBifBB00ifAA0ifBB0ifAA0=ifAA0ihifBB0ifBB0ihifBB0ifBB0
27 ifhvhv0 ifAA0
28 ifhvhv0 ifBB0
29 27 28 h1de2bi ifBB00ifAA0ifBB0ifAA0=ifAA0ihifBB0ifBB0ihifBB0ifBB0
30 11 26 29 dedth2h ABB0ABA=AihBBihBB
31 30 3impia ABB0ABA=AihBBihBB
32 3 31 bitrd ABB0AspanBA=AihBBihBB