Metamath Proof Explorer


Theorem elsx

Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Assertion elsx SVTWASBTA×BS×sT

Proof

Step Hyp Ref Expression
1 eqid ranxS,yTx×y=ranxS,yTx×y
2 1 txbasex SVTWranxS,yTx×yV
3 sssigagen ranxS,yTx×yVranxS,yTx×y𝛔ranxS,yTx×y
4 2 3 syl SVTWranxS,yTx×y𝛔ranxS,yTx×y
5 4 adantr SVTWASBTranxS,yTx×y𝛔ranxS,yTx×y
6 eqid A×B=A×B
7 xpeq1 x=Ax×y=A×y
8 7 eqeq2d x=AA×B=x×yA×B=A×y
9 xpeq2 y=BA×y=A×B
10 9 eqeq2d y=BA×B=A×yA×B=A×B
11 8 10 rspc2ev ASBTA×B=A×BxSyTA×B=x×y
12 6 11 mp3an3 ASBTxSyTA×B=x×y
13 xpexg ASBTA×BV
14 eqid xS,yTx×y=xS,yTx×y
15 14 elrnmpog A×BVA×BranxS,yTx×yxSyTA×B=x×y
16 13 15 syl ASBTA×BranxS,yTx×yxSyTA×B=x×y
17 12 16 mpbird ASBTA×BranxS,yTx×y
18 17 adantl SVTWASBTA×BranxS,yTx×y
19 5 18 sseldd SVTWASBTA×B𝛔ranxS,yTx×y
20 1 sxval SVTWS×sT=𝛔ranxS,yTx×y
21 20 adantr SVTWASBTS×sT=𝛔ranxS,yTx×y
22 19 21 eleqtrrd SVTWASBTA×BS×sT