Metamath Proof Explorer


Theorem elsx

Description: The cartesian product of two open sets is an element of the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017)

Ref Expression
Assertion elsx S V T W A S B T A × B S × s T

Proof

Step Hyp Ref Expression
1 eqid ran x S , y T x × y = ran x S , y T x × y
2 1 txbasex S V T W ran x S , y T x × y V
3 sssigagen ran x S , y T x × y V ran x S , y T x × y 𝛔 ran x S , y T x × y
4 2 3 syl S V T W ran x S , y T x × y 𝛔 ran x S , y T x × y
5 4 adantr S V T W A S B T ran x S , y T x × y 𝛔 ran x S , y T x × y
6 eqid A × B = A × B
7 xpeq1 x = A x × y = A × y
8 7 eqeq2d x = A A × B = x × y A × B = A × y
9 xpeq2 y = B A × y = A × B
10 9 eqeq2d y = B A × B = A × y A × B = A × B
11 8 10 rspc2ev A S B T A × B = A × B x S y T A × B = x × y
12 6 11 mp3an3 A S B T x S y T A × B = x × y
13 xpexg A S B T A × B V
14 eqid x S , y T x × y = x S , y T x × y
15 14 elrnmpog A × B V A × B ran x S , y T x × y x S y T A × B = x × y
16 13 15 syl A S B T A × B ran x S , y T x × y x S y T A × B = x × y
17 12 16 mpbird A S B T A × B ran x S , y T x × y
18 17 adantl S V T W A S B T A × B ran x S , y T x × y
19 5 18 sseldd S V T W A S B T A × B 𝛔 ran x S , y T x × y
20 1 sxval S V T W S × s T = 𝛔 ran x S , y T x × y
21 20 adantr S V T W A S B T S × s T = 𝛔 ran x S , y T x × y
22 19 21 eleqtrrd S V T W A S B T A × B S × s T