Metamath Proof Explorer


Theorem eluzge0nn0

Description: If an integer is greater than or equal to a nonnegative integer, then it is a nonnegative integer. (Contributed by Alexander van der Vekens, 27-Aug-2018)

Ref Expression
Assertion eluzge0nn0 N M 0 M N 0

Proof

Step Hyp Ref Expression
1 eluz2 N M M N M N
2 simpl2 M N M N 0 M N
3 zre M M
4 zre N N
5 0red M N 0
6 simpl M N M
7 simpr M N N
8 5 6 7 3jca M N 0 M N
9 3 4 8 syl2an M N 0 M N
10 letr 0 M N 0 M M N 0 N
11 9 10 syl M N 0 M M N 0 N
12 11 expcomd M N M N 0 M 0 N
13 12 ex M N M N 0 M 0 N
14 13 3imp1 M N M N 0 M 0 N
15 elnn0z N 0 N 0 N
16 2 14 15 sylanbrc M N M N 0 M N 0
17 16 ex M N M N 0 M N 0
18 1 17 sylbi N M 0 M N 0