Metamath Proof Explorer


Theorem eluzrabdioph

Description: Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion eluzrabdioph N 0 M t 1 N A mzPoly 1 N t 0 1 N | A M Dioph N

Proof

Step Hyp Ref Expression
1 rabdiophlem1 t 1 N A mzPoly 1 N t 0 1 N A
2 eluz M A A M M A
3 2 ex M A A M M A
4 3 ralimdv M t 0 1 N A t 0 1 N A M M A
5 4 imp M t 0 1 N A t 0 1 N A M M A
6 1 5 sylan2 M t 1 N A mzPoly 1 N t 0 1 N A M M A
7 rabbi t 0 1 N A M M A t 0 1 N | A M = t 0 1 N | M A
8 6 7 sylib M t 1 N A mzPoly 1 N t 0 1 N | A M = t 0 1 N | M A
9 8 3adant1 N 0 M t 1 N A mzPoly 1 N t 0 1 N | A M = t 0 1 N | M A
10 ovex 1 N V
11 mzpconstmpt 1 N V M t 1 N M mzPoly 1 N
12 10 11 mpan M t 1 N M mzPoly 1 N
13 lerabdioph N 0 t 1 N M mzPoly 1 N t 1 N A mzPoly 1 N t 0 1 N | M A Dioph N
14 12 13 syl3an2 N 0 M t 1 N A mzPoly 1 N t 0 1 N | M A Dioph N
15 9 14 eqeltrd N 0 M t 1 N A mzPoly 1 N t 0 1 N | A M Dioph N