Metamath Proof Explorer


Theorem elvvv

Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008)

Ref Expression
Assertion elvvv A V × V × V x y z A = x y z

Proof

Step Hyp Ref Expression
1 elxp A V × V × V w z A = w z w V × V z V
2 ancom w = x y A = w z A = w z w = x y
3 2 2exbii x y w = x y A = w z x y A = w z w = x y
4 19.42vv x y A = w z w = x y A = w z x y w = x y
5 elvv w V × V x y w = x y
6 5 anbi2i A = w z w V × V A = w z x y w = x y
7 vex z V
8 7 biantru A = w z w V × V A = w z w V × V z V
9 4 6 8 3bitr2i x y A = w z w = x y A = w z w V × V z V
10 anass A = w z w V × V z V A = w z w V × V z V
11 3 9 10 3bitrri A = w z w V × V z V x y w = x y A = w z
12 11 2exbii w z A = w z w V × V z V w z x y w = x y A = w z
13 exrot4 x y w z w = x y A = w z w z x y w = x y A = w z
14 excom w z w = x y A = w z z w w = x y A = w z
15 opex x y V
16 opeq1 w = x y w z = x y z
17 16 eqeq2d w = x y A = w z A = x y z
18 15 17 ceqsexv w w = x y A = w z A = x y z
19 18 exbii z w w = x y A = w z z A = x y z
20 14 19 bitri w z w = x y A = w z z A = x y z
21 20 2exbii x y w z w = x y A = w z x y z A = x y z
22 12 13 21 3bitr2i w z A = w z w V × V z V x y z A = x y z
23 1 22 bitri A V × V × V x y z A = x y z