Metamath Proof Explorer


Theorem en2eqpr

Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion en2eqpr C2𝑜ACBCABC=AB

Proof

Step Hyp Ref Expression
1 2onn 2𝑜ω
2 nnfi 2𝑜ω2𝑜Fin
3 1 2 ax-mp 2𝑜Fin
4 simpl1 C2𝑜ACBCABC2𝑜
5 enfii 2𝑜FinC2𝑜CFin
6 3 4 5 sylancr C2𝑜ACBCABCFin
7 simpl2 C2𝑜ACBCABAC
8 simpl3 C2𝑜ACBCABBC
9 7 8 prssd C2𝑜ACBCABABC
10 enpr2 ACBCABAB2𝑜
11 10 3expa ACBCABAB2𝑜
12 11 3adantl1 C2𝑜ACBCABAB2𝑜
13 4 ensymd C2𝑜ACBCAB2𝑜C
14 entr AB2𝑜2𝑜CABC
15 12 13 14 syl2anc C2𝑜ACBCABABC
16 fisseneq CFinABCABCAB=C
17 6 9 15 16 syl3anc C2𝑜ACBCABAB=C
18 17 eqcomd C2𝑜ACBCABC=AB
19 18 ex C2𝑜ACBCABC=AB