Metamath Proof Explorer


Theorem en2eleq

Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion en2eleq X P P 2 𝑜 P = X P X

Proof

Step Hyp Ref Expression
1 2onn 2 𝑜 ω
2 nnfi 2 𝑜 ω 2 𝑜 Fin
3 1 2 ax-mp 2 𝑜 Fin
4 enfi P 2 𝑜 P Fin 2 𝑜 Fin
5 3 4 mpbiri P 2 𝑜 P Fin
6 5 adantl X P P 2 𝑜 P Fin
7 simpl X P P 2 𝑜 X P
8 1onn 1 𝑜 ω
9 simpr X P P 2 𝑜 P 2 𝑜
10 df-2o 2 𝑜 = suc 1 𝑜
11 9 10 breqtrdi X P P 2 𝑜 P suc 1 𝑜
12 dif1en 1 𝑜 ω P suc 1 𝑜 X P P X 1 𝑜
13 8 11 7 12 mp3an2i X P P 2 𝑜 P X 1 𝑜
14 en1uniel P X 1 𝑜 P X P X
15 13 14 syl X P P 2 𝑜 P X P X
16 eldifsn P X P X P X P P X X
17 15 16 sylib X P P 2 𝑜 P X P P X X
18 17 simpld X P P 2 𝑜 P X P
19 7 18 prssd X P P 2 𝑜 X P X P
20 17 simprd X P P 2 𝑜 P X X
21 20 necomd X P P 2 𝑜 X P X
22 pr2nelem X P P X P X P X X P X 2 𝑜
23 7 18 21 22 syl3anc X P P 2 𝑜 X P X 2 𝑜
24 ensym P 2 𝑜 2 𝑜 P
25 24 adantl X P P 2 𝑜 2 𝑜 P
26 entr X P X 2 𝑜 2 𝑜 P X P X P
27 23 25 26 syl2anc X P P 2 𝑜 X P X P
28 fisseneq P Fin X P X P X P X P X P X = P
29 6 19 27 28 syl3anc X P P 2 𝑜 X P X = P
30 29 eqcomd X P P 2 𝑜 P = X P X