Metamath Proof Explorer


Theorem eqneg

Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion eqneg AA=AA=0

Proof

Step Hyp Ref Expression
1 1p1times A1+1A=A+A
2 ax-1cn 1
3 2 2 addcli 1+1
4 3 mul01i 1+10=0
5 negid AA+A=0
6 4 5 eqtr4id A1+10=A+A
7 1 6 eqeq12d A1+1A=1+10A+A=A+A
8 id AA
9 0cnd A0
10 3 a1i A1+1
11 1re 1
12 11 11 readdcli 1+1
13 0lt1 0<1
14 11 11 13 13 addgt0ii 0<1+1
15 12 14 gt0ne0ii 1+10
16 15 a1i A1+10
17 8 9 10 16 mulcand A1+1A=1+10A=0
18 negcl AA
19 8 8 18 addcand AA+A=A+AA=A
20 7 17 19 3bitr3rd AA=AA=0