Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supmo.1 | |
|
Assertion | eqsup | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | |
|
2 | 1 | adantr | |
3 | 2 | supval2 | |
4 | 3simpc | |
|
5 | 4 | adantl | |
6 | simpr1 | |
|
7 | breq1 | |
|
8 | 7 | notbid | |
9 | 8 | ralbidv | |
10 | breq2 | |
|
11 | 10 | imbi1d | |
12 | 11 | ralbidv | |
13 | 9 12 | anbi12d | |
14 | 13 | rspcev | |
15 | 6 5 14 | syl2anc | |
16 | 2 15 | supeu | |
17 | 13 | riota2 | |
18 | 6 16 17 | syl2anc | |
19 | 5 18 | mpbid | |
20 | 3 19 | eqtrd | |
21 | 20 | ex | |