Metamath Proof Explorer


Theorem eqsup

Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015)

Ref Expression
Hypothesis supmo.1 φROrA
Assertion eqsup φCAyB¬CRyyAyRCzByRzsupBAR=C

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 1 adantr φCAyB¬CRyyAyRCzByRzROrA
3 2 supval2 φCAyB¬CRyyAyRCzByRzsupBAR=ιxA|yB¬xRyyAyRxzByRz
4 3simpc CAyB¬CRyyAyRCzByRzyB¬CRyyAyRCzByRz
5 4 adantl φCAyB¬CRyyAyRCzByRzyB¬CRyyAyRCzByRz
6 simpr1 φCAyB¬CRyyAyRCzByRzCA
7 breq1 x=CxRyCRy
8 7 notbid x=C¬xRy¬CRy
9 8 ralbidv x=CyB¬xRyyB¬CRy
10 breq2 x=CyRxyRC
11 10 imbi1d x=CyRxzByRzyRCzByRz
12 11 ralbidv x=CyAyRxzByRzyAyRCzByRz
13 9 12 anbi12d x=CyB¬xRyyAyRxzByRzyB¬CRyyAyRCzByRz
14 13 rspcev CAyB¬CRyyAyRCzByRzxAyB¬xRyyAyRxzByRz
15 6 5 14 syl2anc φCAyB¬CRyyAyRCzByRzxAyB¬xRyyAyRxzByRz
16 2 15 supeu φCAyB¬CRyyAyRCzByRz∃!xAyB¬xRyyAyRxzByRz
17 13 riota2 CA∃!xAyB¬xRyyAyRxzByRzyB¬CRyyAyRCzByRzιxA|yB¬xRyyAyRxzByRz=C
18 6 16 17 syl2anc φCAyB¬CRyyAyRCzByRzyB¬CRyyAyRCzByRzιxA|yB¬xRyyAyRxzByRz=C
19 5 18 mpbid φCAyB¬CRyyAyRCzByRzιxA|yB¬xRyyAyRxzByRz=C
20 3 19 eqtrd φCAyB¬CRyyAyRCzByRzsupBAR=C
21 20 ex φCAyB¬CRyyAyRCzByRzsupBAR=C