Description: Generalize the statement of the Erdős-Szekeres theorem erdsze to "sequences" indexed by an arbitrary subset of RR , which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erdsze2.r | |
|
erdsze2.s | |
||
erdsze2.f | |
||
erdsze2.a | |
||
erdsze2.l | |
||
Assertion | erdsze2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erdsze2.r | |
|
2 | erdsze2.s | |
|
3 | erdsze2.f | |
|
4 | erdsze2.a | |
|
5 | erdsze2.l | |
|
6 | eqid | |
|
7 | 1 2 3 4 6 5 | erdsze2lem1 | |
8 | 1 | adantr | |
9 | 2 | adantr | |
10 | 3 | adantr | |
11 | 4 | adantr | |
12 | 5 | adantr | |
13 | simprl | |
|
14 | simprr | |
|
15 | 8 9 10 11 6 12 13 14 | erdsze2lem2 | |
16 | 7 15 | exlimddv | |