Metamath Proof Explorer


Theorem erdsze2

Description: Generalize the statement of the Erdős-Szekeres theorem erdsze to "sequences" indexed by an arbitrary subset of RR , which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze2.r φR
erdsze2.s φS
erdsze2.f φF:A1-1
erdsze2.a φA
erdsze2.l φR1S1<A
Assertion erdsze2 φs𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs

Proof

Step Hyp Ref Expression
1 erdsze2.r φR
2 erdsze2.s φS
3 erdsze2.f φF:A1-1
4 erdsze2.a φA
5 erdsze2.l φR1S1<A
6 eqid R1S1=R1S1
7 1 2 3 4 6 5 erdsze2lem1 φff:1R1S1+11-1AfIsom<,<1R1S1+1ranf
8 1 adantr φf:1R1S1+11-1AfIsom<,<1R1S1+1ranfR
9 2 adantr φf:1R1S1+11-1AfIsom<,<1R1S1+1ranfS
10 3 adantr φf:1R1S1+11-1AfIsom<,<1R1S1+1ranfF:A1-1
11 4 adantr φf:1R1S1+11-1AfIsom<,<1R1S1+1ranfA
12 5 adantr φf:1R1S1+11-1AfIsom<,<1R1S1+1ranfR1S1<A
13 simprl φf:1R1S1+11-1AfIsom<,<1R1S1+1ranff:1R1S1+11-1A
14 simprr φf:1R1S1+11-1AfIsom<,<1R1S1+1ranffIsom<,<1R1S1+1ranf
15 8 9 10 11 6 12 13 14 erdsze2lem2 φf:1R1S1+11-1AfIsom<,<1R1S1+1ranfs𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs
16 7 15 exlimddv φs𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs