Metamath Proof Explorer


Theorem erdsze2

Description: Generalize the statement of the Erdős-Szekeres theorem erdsze to "sequences" indexed by an arbitrary subset of RR , which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze2.r φ R
erdsze2.s φ S
erdsze2.f φ F : A 1-1
erdsze2.a φ A
erdsze2.l φ R 1 S 1 < A
Assertion erdsze2 φ s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s

Proof

Step Hyp Ref Expression
1 erdsze2.r φ R
2 erdsze2.s φ S
3 erdsze2.f φ F : A 1-1
4 erdsze2.a φ A
5 erdsze2.l φ R 1 S 1 < A
6 eqid R 1 S 1 = R 1 S 1
7 1 2 3 4 6 5 erdsze2lem1 φ f f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f
8 1 adantr φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f R
9 2 adantr φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f S
10 3 adantr φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f F : A 1-1
11 4 adantr φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f A
12 5 adantr φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f R 1 S 1 < A
13 simprl φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f f : 1 R 1 S 1 + 1 1-1 A
14 simprr φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f f Isom < , < 1 R 1 S 1 + 1 ran f
15 8 9 10 11 6 12 13 14 erdsze2lem2 φ f : 1 R 1 S 1 + 1 1-1 A f Isom < , < 1 R 1 S 1 + 1 ran f s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s
16 7 15 exlimddv φ s 𝒫 A R s F s Isom < , < s F s S s F s Isom < , < -1 s F s