Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erinxp.r | |
|
erinxp.a | |
||
Assertion | erinxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erinxp.r | |
|
2 | erinxp.a | |
|
3 | relinxp | |
|
4 | 3 | a1i | |
5 | simpr | |
|
6 | brinxp2 | |
|
7 | 5 6 | sylib | |
8 | 7 | simplrd | |
9 | 7 | simplld | |
10 | 1 | adantr | |
11 | 7 | simprd | |
12 | 10 11 | ersym | |
13 | brinxp2 | |
|
14 | 8 9 12 13 | syl21anbrc | |
15 | 9 | adantrr | |
16 | simprr | |
|
17 | brinxp2 | |
|
18 | 16 17 | sylib | |
19 | 18 | simplrd | |
20 | 1 | adantr | |
21 | 11 | adantrr | |
22 | 18 | simprd | |
23 | 20 21 22 | ertrd | |
24 | brinxp2 | |
|
25 | 15 19 23 24 | syl21anbrc | |
26 | 1 | adantr | |
27 | 2 | sselda | |
28 | 26 27 | erref | |
29 | 28 | ex | |
30 | 29 | pm4.71rd | |
31 | brin | |
|
32 | brxp | |
|
33 | anidm | |
|
34 | 32 33 | bitri | |
35 | 34 | anbi2i | |
36 | 31 35 | bitri | |
37 | 30 36 | bitr4di | |
38 | 4 14 25 37 | iserd | |