Metamath Proof Explorer


Theorem erngmul-rN

Description: Ring addition operation. (Contributed by NM, 10-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H=LHypK
erngset.t-r T=LTrnKW
erngset.e-r E=TEndoKW
erngset.d-r D=EDRingRKW
erng.m-r ·˙=D
Assertion erngmul-rN KXWHUEVEU·˙V=VU

Proof

Step Hyp Ref Expression
1 erngset.h-r H=LHypK
2 erngset.t-r T=LTrnKW
3 erngset.e-r E=TEndoKW
4 erngset.d-r D=EDRingRKW
5 erng.m-r ·˙=D
6 1 2 3 4 5 erngfmul-rN KXWH·˙=sE,tEts
7 6 adantr KXWHUEVE·˙=sE,tEts
8 7 oveqd KXWHUEVEU·˙V=UsE,tEtsV
9 coexg VEUEVUV
10 9 ancoms UEVEVUV
11 coeq2 s=Uts=tU
12 coeq1 t=VtU=VU
13 eqid sE,tEts=sE,tEts
14 11 12 13 ovmpog UEVEVUVUsE,tEtsV=VU
15 10 14 mpd3an3 UEVEUsE,tEtsV=VU
16 15 adantl KXWHUEVEUsE,tEtsV=VU
17 8 16 eqtrd KXWHUEVEU·˙V=VU