Metamath Proof Explorer


Theorem estrcid

Description: The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020)

Ref Expression
Hypotheses estrccat.c C=ExtStrCatU
estrcid.o 1˙=IdC
estrcid.u φUV
estrcid.x φXU
Assertion estrcid φ1˙X=IBaseX

Proof

Step Hyp Ref Expression
1 estrccat.c C=ExtStrCatU
2 estrcid.o 1˙=IdC
3 estrcid.u φUV
4 estrcid.x φXU
5 1 estrccatid UVCCatIdC=xUIBasex
6 3 5 syl φCCatIdC=xUIBasex
7 6 simprd φIdC=xUIBasex
8 2 7 eqtrid φ1˙=xUIBasex
9 fveq2 x=XBasex=BaseX
10 9 reseq2d x=XIBasex=IBaseX
11 10 adantl φx=XIBasex=IBaseX
12 fvexd φBaseXV
13 12 resiexd φIBaseXV
14 8 11 4 13 fvmptd φ1˙X=IBaseX