Metamath Proof Explorer


Theorem esumcvg2

Description: Simpler version of esumcvg . (Contributed by Thierry Arnoux, 5-Sep-2017)

Ref Expression
Hypotheses esumcvg2.j J=TopOpen𝑠*𝑠0+∞
esumcvg2.a φkA0+∞
esumcvg2.l k=lA=B
esumcvg2.m k=mA=C
Assertion esumcvg2 φn*k=1nAtJ*kA

Proof

Step Hyp Ref Expression
1 esumcvg2.j J=TopOpen𝑠*𝑠0+∞
2 esumcvg2.a φkA0+∞
3 esumcvg2.l k=lA=B
4 esumcvg2.m k=mA=C
5 4 cbvesumv *k=1iA=*m=1iC
6 oveq2 i=n1i=1n
7 esumeq1 1i=1n*k=1iA=*k=1nA
8 6 7 syl i=n*k=1iA=*k=1nA
9 5 8 eqtr3id i=n*m=1iC=*k=1nA
10 9 cbvmptv i*m=1iC=n*k=1nA
11 1 10 2 3 esumcvg φi*m=1iCtJ*kA
12 10 11 eqbrtrrid φn*k=1nAtJ*kA