Metamath Proof Explorer


Theorem etransclem40

Description: The N -th derivative of F is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem40.s φS
etransclem40.a φXTopOpenfld𝑡S
etransclem40.p φP
etransclem40.m φM0
etransclem40.f F=xXxP1k=1MxkP
etransclem40.6 φN0
Assertion etransclem40 φSDnFN:Xcn

Proof

Step Hyp Ref Expression
1 etransclem40.s φS
2 etransclem40.a φXTopOpenfld𝑡S
3 etransclem40.p φP
4 etransclem40.m φM0
5 etransclem40.f F=xXxP1k=1MxkP
6 etransclem40.6 φN0
7 etransclem5 j0MyXyjifj=0P1P=k0MxXxkifk=0P1P
8 etransclem11 m0d0m0M|j=0Mdj=m=n0c0n0M|k=0Mck=n
9 1 2 3 4 5 6 7 8 etransclem34 φSDnFN:Xcn