Metamath Proof Explorer


Theorem etransclem6

Description: A change of bound variable, often used in proofs for etransc . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion etransclem6 xxP1j=1MxjP=yyP1k=1MykP

Proof

Step Hyp Ref Expression
1 oveq1 x=yxP1=yP1
2 oveq2 j=kxj=xk
3 2 oveq1d j=kxjP=xkP
4 3 cbvprodv j=1MxjP=k=1MxkP
5 oveq1 x=yxk=yk
6 5 oveq1d x=yxkP=ykP
7 6 prodeq2ad x=yk=1MxkP=k=1MykP
8 4 7 eqtrid x=yj=1MxjP=k=1MykP
9 1 8 oveq12d x=yxP1j=1MxjP=yP1k=1MykP
10 9 cbvmptv xxP1j=1MxjP=yyP1k=1MykP