Metamath Proof Explorer


Theorem etransclem7

Description: The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem7.n φ P
etransclem7.c φ C : 0 M 0 N
etransclem7.j φ J 0 M
Assertion etransclem7 φ j = 1 M if P < C j 0 P ! P C j ! J j P C j

Proof

Step Hyp Ref Expression
1 etransclem7.n φ P
2 etransclem7.c φ C : 0 M 0 N
3 etransclem7.j φ J 0 M
4 fzfid φ 1 M Fin
5 0zd φ j 1 M P < C j 0
6 0zd φ j 1 M ¬ P < C j 0
7 1 nnzd φ P
8 7 ad2antrr φ j 1 M ¬ P < C j P
9 7 adantr φ j 1 M P
10 2 adantr φ j 1 M C : 0 M 0 N
11 0zd j 1 M 0
12 fzp1ss 0 0 + 1 M 0 M
13 11 12 syl j 1 M 0 + 1 M 0 M
14 id j 1 M j 1 M
15 1e0p1 1 = 0 + 1
16 15 oveq1i 1 M = 0 + 1 M
17 14 16 eleqtrdi j 1 M j 0 + 1 M
18 13 17 sseldd j 1 M j 0 M
19 18 adantl φ j 1 M j 0 M
20 10 19 ffvelrnd φ j 1 M C j 0 N
21 20 elfzelzd φ j 1 M C j
22 9 21 zsubcld φ j 1 M P C j
23 22 adantr φ j 1 M ¬ P < C j P C j
24 21 zred φ j 1 M C j
25 24 adantr φ j 1 M ¬ P < C j C j
26 8 zred φ j 1 M ¬ P < C j P
27 simpr φ j 1 M ¬ P < C j ¬ P < C j
28 25 26 27 nltled φ j 1 M ¬ P < C j C j P
29 26 25 subge0d φ j 1 M ¬ P < C j 0 P C j C j P
30 28 29 mpbird φ j 1 M ¬ P < C j 0 P C j
31 elfzle1 C j 0 N 0 C j
32 20 31 syl φ j 1 M 0 C j
33 32 adantr φ j 1 M ¬ P < C j 0 C j
34 26 25 subge02d φ j 1 M ¬ P < C j 0 C j P C j P
35 33 34 mpbid φ j 1 M ¬ P < C j P C j P
36 6 8 23 30 35 elfzd φ j 1 M ¬ P < C j P C j 0 P
37 permnn P C j 0 P P ! P C j !
38 36 37 syl φ j 1 M ¬ P < C j P ! P C j !
39 38 nnzd φ j 1 M ¬ P < C j P ! P C j !
40 3 elfzelzd φ J
41 40 adantr φ j 1 M J
42 elfzelz j 1 M j
43 42 adantl φ j 1 M j
44 41 43 zsubcld φ j 1 M J j
45 44 adantr φ j 1 M ¬ P < C j J j
46 elnn0z P C j 0 P C j 0 P C j
47 23 30 46 sylanbrc φ j 1 M ¬ P < C j P C j 0
48 zexpcl J j P C j 0 J j P C j
49 45 47 48 syl2anc φ j 1 M ¬ P < C j J j P C j
50 39 49 zmulcld φ j 1 M ¬ P < C j P ! P C j ! J j P C j
51 5 50 ifclda φ j 1 M if P < C j 0 P ! P C j ! J j P C j
52 4 51 fprodzcl φ j = 1 M if P < C j 0 P ! P C j ! J j P C j