Metamath Proof Explorer


Theorem euind

Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010)

Ref Expression
Hypotheses euind.1 BV
euind.2 x=yφψ
Assertion euind xyφψA=Bxφ∃!zxφz=A

Proof

Step Hyp Ref Expression
1 euind.1 BV
2 euind.2 x=yφψ
3 2 cbvexvw xφyψ
4 1 isseti zz=B
5 4 biantrur ψzz=Bψ
6 5 exbii yψyzz=Bψ
7 19.41v zz=Bψzz=Bψ
8 7 exbii yzz=Bψyzz=Bψ
9 excom yzz=Bψzyz=Bψ
10 6 8 9 3bitr2i yψzyz=Bψ
11 3 10 bitri xφzyz=Bψ
12 eqeq2 A=Bz=Az=B
13 12 imim2i φψA=Bφψz=Az=B
14 biimpr z=Az=Bz=Bz=A
15 14 imim2i φψz=Az=Bφψz=Bz=A
16 an31 φψz=Bz=Bψφ
17 16 imbi1i φψz=Bz=Az=Bψφz=A
18 impexp φψz=Bz=Aφψz=Bz=A
19 impexp z=Bψφz=Az=Bψφz=A
20 17 18 19 3bitr3i φψz=Bz=Az=Bψφz=A
21 15 20 sylib φψz=Az=Bz=Bψφz=A
22 13 21 syl φψA=Bz=Bψφz=A
23 22 2alimi xyφψA=Bxyz=Bψφz=A
24 19.23v yz=Bψφz=Ayz=Bψφz=A
25 24 albii xyz=Bψφz=Axyz=Bψφz=A
26 19.21v xyz=Bψφz=Ayz=Bψxφz=A
27 25 26 bitri xyz=Bψφz=Ayz=Bψxφz=A
28 23 27 sylib xyφψA=Byz=Bψxφz=A
29 28 eximdv xyφψA=Bzyz=Bψzxφz=A
30 11 29 biimtrid xyφψA=Bxφzxφz=A
31 30 imp xyφψA=Bxφzxφz=A
32 pm4.24 φφφ
33 32 biimpi φφφ
34 anim12 φz=Aφw=Aφφz=Aw=A
35 eqtr3 z=Aw=Az=w
36 33 34 35 syl56 φz=Aφw=Aφz=w
37 36 alanimi xφz=Axφw=Axφz=w
38 19.23v xφz=wxφz=w
39 37 38 sylib xφz=Axφw=Axφz=w
40 39 com12 xφxφz=Axφw=Az=w
41 40 alrimivv xφzwxφz=Axφw=Az=w
42 41 adantl xyφψA=Bxφzwxφz=Axφw=Az=w
43 eqeq1 z=wz=Aw=A
44 43 imbi2d z=wφz=Aφw=A
45 44 albidv z=wxφz=Axφw=A
46 45 eu4 ∃!zxφz=Azxφz=Azwxφz=Axφw=Az=w
47 31 42 46 sylanbrc xyφψA=Bxφ∃!zxφz=A