Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | euind.1 | |
|
euind.2 | |
||
Assertion | euind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euind.1 | |
|
2 | euind.2 | |
|
3 | 2 | cbvexvw | |
4 | 1 | isseti | |
5 | 4 | biantrur | |
6 | 5 | exbii | |
7 | 19.41v | |
|
8 | 7 | exbii | |
9 | excom | |
|
10 | 6 8 9 | 3bitr2i | |
11 | 3 10 | bitri | |
12 | eqeq2 | |
|
13 | 12 | imim2i | |
14 | biimpr | |
|
15 | 14 | imim2i | |
16 | an31 | |
|
17 | 16 | imbi1i | |
18 | impexp | |
|
19 | impexp | |
|
20 | 17 18 19 | 3bitr3i | |
21 | 15 20 | sylib | |
22 | 13 21 | syl | |
23 | 22 | 2alimi | |
24 | 19.23v | |
|
25 | 24 | albii | |
26 | 19.21v | |
|
27 | 25 26 | bitri | |
28 | 23 27 | sylib | |
29 | 28 | eximdv | |
30 | 11 29 | biimtrid | |
31 | 30 | imp | |
32 | pm4.24 | |
|
33 | 32 | biimpi | |
34 | anim12 | |
|
35 | eqtr3 | |
|
36 | 33 34 35 | syl56 | |
37 | 36 | alanimi | |
38 | 19.23v | |
|
39 | 37 38 | sylib | |
40 | 39 | com12 | |
41 | 40 | alrimivv | |
42 | 41 | adantl | |
43 | eqeq1 | |
|
44 | 43 | imbi2d | |
45 | 44 | albidv | |
46 | 45 | eu4 | |
47 | 31 42 46 | sylanbrc | |