Metamath Proof Explorer


Theorem eulerpartlem1

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
Assertion eulerpartlem1 M:H1-1 onto𝒫J×0Fin

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 nnex V
9 4 8 rabex2 JV
10 nn0ex 0V
11 eqid r𝒫0Jxy|xJyrx=r𝒫0Jxy|xJyrx
12 9 10 11 6 fpwrelmapffs r𝒫0Jxy|xJyrxH:H1-1 onto𝒫J×0Fin
13 ssrab2 r𝒫0FinJ|rsuppFin𝒫0FinJ
14 10 pwex 𝒫0V
15 inss1 𝒫0Fin𝒫0
16 mapss 𝒫0V𝒫0Fin𝒫0𝒫0FinJ𝒫0J
17 14 15 16 mp2an 𝒫0FinJ𝒫0J
18 13 17 sstri r𝒫0FinJ|rsuppFin𝒫0J
19 6 18 eqsstri H𝒫0J
20 resmpt H𝒫0Jr𝒫0Jxy|xJyrxH=rHxy|xJyrx
21 19 20 ax-mp r𝒫0Jxy|xJyrxH=rHxy|xJyrx
22 7 21 eqtr4i M=r𝒫0Jxy|xJyrxH
23 f1oeq1 M=r𝒫0Jxy|xJyrxHM:H1-1 onto𝒫J×0Finr𝒫0Jxy|xJyrxH:H1-1 onto𝒫J×0Fin
24 22 23 ax-mp M:H1-1 onto𝒫J×0Finr𝒫0Jxy|xJyrxH:H1-1 onto𝒫J×0Fin
25 12 24 mpbir M:H1-1 onto𝒫J×0Fin