Metamath Proof Explorer


Theorem eulerpartlemgu

Description: Lemma for eulerpart : Rewriting the U set for an odd partition Note that interestingly, this proof reuses marypha2lem2 . (Contributed by Thierry Arnoux, 10-Aug-2018)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
eulerpart.r R = f | f -1 Fin
eulerpart.t T = f 0 | f -1 J
eulerpart.g G = o T R 𝟙 F M bits o J
eulerpartlemgh.1 U = t A -1 J t × bits A t
Assertion eulerpartlemgu A T R U = t n | t A -1 J n bits A t

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 eulerpart.r R = f | f -1 Fin
9 eulerpart.t T = f 0 | f -1 J
10 eulerpart.g G = o T R 𝟙 F M bits o J
11 eulerpartlemgh.1 U = t A -1 J t × bits A t
12 1 2 3 4 5 6 7 8 9 eulerpartlemt0 A T R A 0 A -1 Fin A -1 J
13 12 simp1bi A T R A 0
14 elmapi A 0 A : 0
15 13 14 syl A T R A : 0
16 15 adantr A T R t A -1 J A : 0
17 16 ffund A T R t A -1 J Fun A
18 inss1 A -1 J A -1
19 cnvimass A -1 dom A
20 19 15 fssdm A T R A -1
21 18 20 sstrid A T R A -1 J
22 21 sselda A T R t A -1 J t
23 15 fdmd A T R dom A =
24 23 eleq2d A T R t dom A t
25 24 adantr A T R t A -1 J t dom A t
26 22 25 mpbird A T R t A -1 J t dom A
27 fvco Fun A t dom A bits A t = bits A t
28 17 26 27 syl2anc A T R t A -1 J bits A t = bits A t
29 28 xpeq2d A T R t A -1 J t × bits A t = t × bits A t
30 29 iuneq2dv A T R t A -1 J t × bits A t = t A -1 J t × bits A t
31 eqid t A -1 J t × bits A t = t A -1 J t × bits A t
32 31 marypha2lem2 t A -1 J t × bits A t = t n | t A -1 J n bits A t
33 30 32 eqtr3di A T R t A -1 J t × bits A t = t n | t A -1 J n bits A t
34 11 33 eqtrid A T R U = t n | t A -1 J n bits A t