Metamath Proof Explorer


Theorem euoreqb

Description: There is a set which is equal to one of two other sets iff the other sets are equal. (Contributed by AV, 24-Jan-2023)

Ref Expression
Assertion euoreqb A V B V ∃! x V x = A x = B A = B

Proof

Step Hyp Ref Expression
1 eqeq1 x = y x = A y = A
2 eqeq1 x = y x = B y = B
3 1 2 orbi12d x = y x = A x = B y = A y = B
4 3 reu8 ∃! x V x = A x = B x V x = A x = B y V y = A y = B x = y
5 simprlr x = A A V B V x V B V
6 eqeq1 y = B y = A B = A
7 eqeq1 y = B y = B B = B
8 6 7 orbi12d y = B y = A y = B B = A B = B
9 eqeq2 y = B x = y x = B
10 8 9 imbi12d y = B y = A y = B x = y B = A B = B x = B
11 10 rspcv B V y V y = A y = B x = y B = A B = B x = B
12 5 11 syl x = A A V B V x V y V y = A y = B x = y B = A B = B x = B
13 ioran ¬ B = A B = B ¬ B = A ¬ B = B
14 eqid B = B
15 14 pm2.24i ¬ B = B x = A A V B V x V A = B
16 13 15 simplbiim ¬ B = A B = B x = A A V B V x V A = B
17 eqtr2 x = A x = B A = B
18 17 ancoms x = B x = A A = B
19 18 a1d x = B x = A A V B V x V A = B
20 19 expimpd x = B x = A A V B V x V A = B
21 16 20 ja B = A B = B x = B x = A A V B V x V A = B
22 21 com12 x = A A V B V x V B = A B = B x = B A = B
23 12 22 syld x = A A V B V x V y V y = A y = B x = y A = B
24 23 ex x = A A V B V x V y V y = A y = B x = y A = B
25 simprll x = B A V B V x V A V
26 eqeq1 y = A y = A A = A
27 eqeq1 y = A y = B A = B
28 26 27 orbi12d y = A y = A y = B A = A A = B
29 eqeq2 y = A x = y x = A
30 28 29 imbi12d y = A y = A y = B x = y A = A A = B x = A
31 30 rspcv A V y V y = A y = B x = y A = A A = B x = A
32 25 31 syl x = B A V B V x V y V y = A y = B x = y A = A A = B x = A
33 ioran ¬ A = A A = B ¬ A = A ¬ A = B
34 eqid A = A
35 34 pm2.24i ¬ A = A x = B A V B V x V A = B
36 35 adantr ¬ A = A ¬ A = B x = B A V B V x V A = B
37 33 36 sylbi ¬ A = A A = B x = B A V B V x V A = B
38 17 a1d x = A x = B A V B V x V A = B
39 38 expimpd x = A x = B A V B V x V A = B
40 37 39 ja A = A A = B x = A x = B A V B V x V A = B
41 40 com12 x = B A V B V x V A = A A = B x = A A = B
42 32 41 syld x = B A V B V x V y V y = A y = B x = y A = B
43 42 ex x = B A V B V x V y V y = A y = B x = y A = B
44 24 43 jaoi x = A x = B A V B V x V y V y = A y = B x = y A = B
45 44 com12 A V B V x V x = A x = B y V y = A y = B x = y A = B
46 45 impd A V B V x V x = A x = B y V y = A y = B x = y A = B
47 46 rexlimdva A V B V x V x = A x = B y V y = A y = B x = y A = B
48 4 47 syl5bi A V B V ∃! x V x = A x = B A = B
49 reueq B V ∃! x V x = B
50 49 biimpi B V ∃! x V x = B
51 50 adantl A V B V ∃! x V x = B
52 51 adantr A V B V A = B ∃! x V x = B
53 eqeq2 A = B x = A x = B
54 53 adantl A V B V A = B x = A x = B
55 54 orbi1d A V B V A = B x = A x = B x = B x = B
56 oridm x = B x = B x = B
57 55 56 bitrdi A V B V A = B x = A x = B x = B
58 57 reubidv A V B V A = B ∃! x V x = A x = B ∃! x V x = B
59 52 58 mpbird A V B V A = B ∃! x V x = A x = B
60 59 ex A V B V A = B ∃! x V x = A x = B
61 48 60 impbid A V B V ∃! x V x = A x = B A = B