Metamath Proof Explorer


Theorem euoreqb

Description: There is a set which is equal to one of two other sets iff the other sets are equal. (Contributed by AV, 24-Jan-2023)

Ref Expression
Assertion euoreqb AVBV∃!xVx=Ax=BA=B

Proof

Step Hyp Ref Expression
1 eqeq1 x=yx=Ay=A
2 eqeq1 x=yx=By=B
3 1 2 orbi12d x=yx=Ax=By=Ay=B
4 3 reu8 ∃!xVx=Ax=BxVx=Ax=ByVy=Ay=Bx=y
5 simprlr x=AAVBVxVBV
6 eqeq1 y=By=AB=A
7 eqeq1 y=By=BB=B
8 6 7 orbi12d y=By=Ay=BB=AB=B
9 eqeq2 y=Bx=yx=B
10 8 9 imbi12d y=By=Ay=Bx=yB=AB=Bx=B
11 10 rspcv BVyVy=Ay=Bx=yB=AB=Bx=B
12 5 11 syl x=AAVBVxVyVy=Ay=Bx=yB=AB=Bx=B
13 ioran ¬B=AB=B¬B=A¬B=B
14 eqid B=B
15 14 pm2.24i ¬B=Bx=AAVBVxVA=B
16 13 15 simplbiim ¬B=AB=Bx=AAVBVxVA=B
17 eqtr2 x=Ax=BA=B
18 17 ancoms x=Bx=AA=B
19 18 a1d x=Bx=AAVBVxVA=B
20 19 expimpd x=Bx=AAVBVxVA=B
21 16 20 ja B=AB=Bx=Bx=AAVBVxVA=B
22 21 com12 x=AAVBVxVB=AB=Bx=BA=B
23 12 22 syld x=AAVBVxVyVy=Ay=Bx=yA=B
24 23 ex x=AAVBVxVyVy=Ay=Bx=yA=B
25 simprll x=BAVBVxVAV
26 eqeq1 y=Ay=AA=A
27 eqeq1 y=Ay=BA=B
28 26 27 orbi12d y=Ay=Ay=BA=AA=B
29 eqeq2 y=Ax=yx=A
30 28 29 imbi12d y=Ay=Ay=Bx=yA=AA=Bx=A
31 30 rspcv AVyVy=Ay=Bx=yA=AA=Bx=A
32 25 31 syl x=BAVBVxVyVy=Ay=Bx=yA=AA=Bx=A
33 ioran ¬A=AA=B¬A=A¬A=B
34 eqid A=A
35 34 pm2.24i ¬A=Ax=BAVBVxVA=B
36 35 adantr ¬A=A¬A=Bx=BAVBVxVA=B
37 33 36 sylbi ¬A=AA=Bx=BAVBVxVA=B
38 17 a1d x=Ax=BAVBVxVA=B
39 38 expimpd x=Ax=BAVBVxVA=B
40 37 39 ja A=AA=Bx=Ax=BAVBVxVA=B
41 40 com12 x=BAVBVxVA=AA=Bx=AA=B
42 32 41 syld x=BAVBVxVyVy=Ay=Bx=yA=B
43 42 ex x=BAVBVxVyVy=Ay=Bx=yA=B
44 24 43 jaoi x=Ax=BAVBVxVyVy=Ay=Bx=yA=B
45 44 com12 AVBVxVx=Ax=ByVy=Ay=Bx=yA=B
46 45 impd AVBVxVx=Ax=ByVy=Ay=Bx=yA=B
47 46 rexlimdva AVBVxVx=Ax=ByVy=Ay=Bx=yA=B
48 4 47 biimtrid AVBV∃!xVx=Ax=BA=B
49 reueq BV∃!xVx=B
50 49 biimpi BV∃!xVx=B
51 50 adantl AVBV∃!xVx=B
52 51 adantr AVBVA=B∃!xVx=B
53 eqeq2 A=Bx=Ax=B
54 53 adantl AVBVA=Bx=Ax=B
55 54 orbi1d AVBVA=Bx=Ax=Bx=Bx=B
56 oridm x=Bx=Bx=B
57 55 56 bitrdi AVBVA=Bx=Ax=Bx=B
58 57 reubidv AVBVA=B∃!xVx=Ax=B∃!xVx=B
59 52 58 mpbird AVBVA=B∃!xVx=Ax=B
60 59 ex AVBVA=B∃!xVx=Ax=B
61 48 60 impbid AVBV∃!xVx=Ax=BA=B