Description: There is a set which is equal to one of two other sets iff the other sets are equal. (Contributed by AV, 24-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | euoreqb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | |
|
2 | eqeq1 | |
|
3 | 1 2 | orbi12d | |
4 | 3 | reu8 | |
5 | simprlr | |
|
6 | eqeq1 | |
|
7 | eqeq1 | |
|
8 | 6 7 | orbi12d | |
9 | eqeq2 | |
|
10 | 8 9 | imbi12d | |
11 | 10 | rspcv | |
12 | 5 11 | syl | |
13 | ioran | |
|
14 | eqid | |
|
15 | 14 | pm2.24i | |
16 | 13 15 | simplbiim | |
17 | eqtr2 | |
|
18 | 17 | ancoms | |
19 | 18 | a1d | |
20 | 19 | expimpd | |
21 | 16 20 | ja | |
22 | 21 | com12 | |
23 | 12 22 | syld | |
24 | 23 | ex | |
25 | simprll | |
|
26 | eqeq1 | |
|
27 | eqeq1 | |
|
28 | 26 27 | orbi12d | |
29 | eqeq2 | |
|
30 | 28 29 | imbi12d | |
31 | 30 | rspcv | |
32 | 25 31 | syl | |
33 | ioran | |
|
34 | eqid | |
|
35 | 34 | pm2.24i | |
36 | 35 | adantr | |
37 | 33 36 | sylbi | |
38 | 17 | a1d | |
39 | 38 | expimpd | |
40 | 37 39 | ja | |
41 | 40 | com12 | |
42 | 32 41 | syld | |
43 | 42 | ex | |
44 | 24 43 | jaoi | |
45 | 44 | com12 | |
46 | 45 | impd | |
47 | 46 | rexlimdva | |
48 | 4 47 | biimtrid | |
49 | reueq | |
|
50 | 49 | biimpi | |
51 | 50 | adantl | |
52 | 51 | adantr | |
53 | eqeq2 | |
|
54 | 53 | adantl | |
55 | 54 | orbi1d | |
56 | oridm | |
|
57 | 55 56 | bitrdi | |
58 | 57 | reubidv | |
59 | 52 58 | mpbird | |
60 | 59 | ex | |
61 | 48 60 | impbid | |