Metamath Proof Explorer


Theorem even2n

Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020)

Ref Expression
Assertion even2n 2Nn2n=N

Proof

Step Hyp Ref Expression
1 evenelz 2NN
2 2z 2
3 2 a1i n2
4 id nn
5 3 4 zmulcld n2n
6 5 adantr n2n=N2n
7 eleq1 2n=N2nN
8 7 adantl n2n=N2nN
9 6 8 mpbid n2n=NN
10 9 rexlimiva n2n=NN
11 divides 2N2Nnn2=N
12 zcn nn
13 2cnd n2
14 12 13 mulcomd nn2=2n
15 14 eqeq1d nn2=N2n=N
16 15 rexbiia nn2=Nn2n=N
17 11 16 bitrdi 2N2Nn2n=N
18 2 17 mpan N2Nn2n=N
19 1 10 18 pm5.21nii 2Nn2n=N