Metamath Proof Explorer


Theorem evlcl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlcl.q Q=IevalR
evlcl.p P=ImPolyR
evlcl.b B=BaseP
evlcl.k K=BaseR
evlcl.i φIV
evlcl.r φRCRing
evlcl.f φFB
evlcl.a φAKI
Assertion evlcl φQFAK

Proof

Step Hyp Ref Expression
1 evlcl.q Q=IevalR
2 evlcl.p P=ImPolyR
3 evlcl.b B=BaseP
4 evlcl.k K=BaseR
5 evlcl.i φIV
6 evlcl.r φRCRing
7 evlcl.f φFB
8 evlcl.a φAKI
9 eqid R𝑠KI=R𝑠KI
10 eqid BaseR𝑠KI=BaseR𝑠KI
11 ovexd φKIV
12 1 4 2 9 evlrhm IVRCRingQPRingHomR𝑠KI
13 5 6 12 syl2anc φQPRingHomR𝑠KI
14 3 10 rhmf QPRingHomR𝑠KIQ:BBaseR𝑠KI
15 13 14 syl φQ:BBaseR𝑠KI
16 15 7 ffvelcdmd φQFBaseR𝑠KI
17 9 4 10 6 11 16 pwselbas φQF:KIK
18 17 8 ffvelcdmd φQFAK