Metamath Proof Explorer


Theorem evls1varsrng

Description: The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)

Ref Expression
Hypotheses evls1varsrng.q Q=SevalSub1R
evls1varsrng.o O=eval1S
evls1varsrng.v V=var1U
evls1varsrng.u U=S𝑠R
evls1varsrng.b B=BaseS
evls1varsrng.s φSCRing
evls1varsrng.r φRSubRingS
Assertion evls1varsrng φQV=OV

Proof

Step Hyp Ref Expression
1 evls1varsrng.q Q=SevalSub1R
2 evls1varsrng.o O=eval1S
3 evls1varsrng.v V=var1U
4 evls1varsrng.u U=S𝑠R
5 evls1varsrng.b B=BaseS
6 evls1varsrng.s φSCRing
7 evls1varsrng.r φRSubRingS
8 1 3 4 5 6 7 evls1var φQV=IB
9 2 5 evl1fval1 O=SevalSub1B
10 9 a1i φO=SevalSub1B
11 10 fveq1d φOV=SevalSub1BV
12 3 a1i φV=var1U
13 eqid var1S=var1S
14 13 7 4 subrgvr1 φvar1S=var1U
15 5 ressid SCRingS𝑠B=S
16 6 15 syl φS𝑠B=S
17 16 eqcomd φS=S𝑠B
18 17 fveq2d φvar1S=var1S𝑠B
19 12 14 18 3eqtr2d φV=var1S𝑠B
20 19 fveq2d φSevalSub1BV=SevalSub1Bvar1S𝑠B
21 eqid SevalSub1B=SevalSub1B
22 eqid var1S𝑠B=var1S𝑠B
23 eqid S𝑠B=S𝑠B
24 crngring SCRingSRing
25 5 subrgid SRingBSubRingS
26 6 24 25 3syl φBSubRingS
27 21 22 23 5 6 26 evls1var φSevalSub1Bvar1S𝑠B=IB
28 11 20 27 3eqtrrd φIB=OV
29 8 28 eqtrd φQV=OV