Description: The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evls1varsrng.q | |
|
evls1varsrng.o | |
||
evls1varsrng.v | |
||
evls1varsrng.u | |
||
evls1varsrng.b | |
||
evls1varsrng.s | |
||
evls1varsrng.r | |
||
Assertion | evls1varsrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1varsrng.q | |
|
2 | evls1varsrng.o | |
|
3 | evls1varsrng.v | |
|
4 | evls1varsrng.u | |
|
5 | evls1varsrng.b | |
|
6 | evls1varsrng.s | |
|
7 | evls1varsrng.r | |
|
8 | 1 3 4 5 6 7 | evls1var | |
9 | 2 5 | evl1fval1 | |
10 | 9 | a1i | |
11 | 10 | fveq1d | |
12 | 3 | a1i | |
13 | eqid | |
|
14 | 13 7 4 | subrgvr1 | |
15 | 5 | ressid | |
16 | 6 15 | syl | |
17 | 16 | eqcomd | |
18 | 17 | fveq2d | |
19 | 12 14 18 | 3eqtr2d | |
20 | 19 | fveq2d | |
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | crngring | |
|
25 | 5 | subrgid | |
26 | 6 24 25 | 3syl | |
27 | 21 22 23 5 6 26 | evls1var | |
28 | 11 20 27 | 3eqtrrd | |
29 | 8 28 | eqtrd | |