Metamath Proof Explorer


Theorem exidcl

Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypothesis exidcl.1 X = ran G
Assertion exidcl G Magma ExId A X B X A G B X

Proof

Step Hyp Ref Expression
1 exidcl.1 X = ran G
2 rngopidOLD G Magma ExId ran G = dom dom G
3 1 2 eqtrid G Magma ExId X = dom dom G
4 3 eleq2d G Magma ExId A X A dom dom G
5 3 eleq2d G Magma ExId B X B dom dom G
6 4 5 anbi12d G Magma ExId A X B X A dom dom G B dom dom G
7 6 pm5.32i G Magma ExId A X B X G Magma ExId A dom dom G B dom dom G
8 inss1 Magma ExId Magma
9 8 sseli G Magma ExId G Magma
10 eqid dom dom G = dom dom G
11 10 clmgmOLD G Magma A dom dom G B dom dom G A G B dom dom G
12 9 11 syl3an1 G Magma ExId A dom dom G B dom dom G A G B dom dom G
13 12 3expb G Magma ExId A dom dom G B dom dom G A G B dom dom G
14 7 13 sylbi G Magma ExId A X B X A G B dom dom G
15 14 3impb G Magma ExId A X B X A G B dom dom G
16 3 3ad2ant1 G Magma ExId A X B X X = dom dom G
17 15 16 eleqtrrd G Magma ExId A X B X A G B X