Metamath Proof Explorer


Theorem exlimddvfi

Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)

Ref Expression
Hypotheses exlimddvfi.1 φ x θ
exlimddvfi.2 y θ
exlimddvfi.3 y ψ
exlimddvfi.4 [˙y / x]˙ θ η
exlimddvfi.5 η ψ χ
exlimddvfi.6 y χ
Assertion exlimddvfi φ ψ χ

Proof

Step Hyp Ref Expression
1 exlimddvfi.1 φ x θ
2 exlimddvfi.2 y θ
3 exlimddvfi.3 y ψ
4 exlimddvfi.4 [˙y / x]˙ θ η
5 exlimddvfi.5 η ψ χ
6 exlimddvfi.6 y χ
7 2 sb8e x θ y y x θ
8 1 7 sylib φ y y x θ
9 sbsbc y x θ [˙y / x]˙ θ
10 9 4 bitri y x θ η
11 10 5 sylanb y x θ ψ χ
12 8 3 11 6 exlimddvf φ ψ χ