Metamath Proof Explorer
Description: A lemma for eliminating an existential quantifier, in inference form.
(Contributed by Giovanni Mascellani, 31-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
exlimddvfi.1 |
|
|
|
exlimddvfi.2 |
|
|
|
exlimddvfi.3 |
|
|
|
exlimddvfi.4 |
|
|
|
exlimddvfi.5 |
|
|
|
exlimddvfi.6 |
|
|
Assertion |
exlimddvfi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimddvfi.1 |
|
2 |
|
exlimddvfi.2 |
|
3 |
|
exlimddvfi.3 |
|
4 |
|
exlimddvfi.4 |
|
5 |
|
exlimddvfi.5 |
|
6 |
|
exlimddvfi.6 |
|
7 |
2
|
sb8e |
|
8 |
1 7
|
sylib |
|
9 |
|
sbsbc |
|
10 |
9 4
|
bitri |
|
11 |
10 5
|
sylanb |
|
12 |
8 3 11 6
|
exlimddvf |
|