Metamath Proof Explorer
		
		
		
		Description:  A lemma for eliminating an existential quantifier, in inference form.
       (Contributed by Giovanni Mascellani, 31-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | exlimddvfi.1 |  | 
					
						|  |  | exlimddvfi.2 |  | 
					
						|  |  | exlimddvfi.3 |  | 
					
						|  |  | exlimddvfi.4 |  | 
					
						|  |  | exlimddvfi.5 |  | 
					
						|  |  | exlimddvfi.6 |  | 
				
					|  | Assertion | exlimddvfi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exlimddvfi.1 |  | 
						
							| 2 |  | exlimddvfi.2 |  | 
						
							| 3 |  | exlimddvfi.3 |  | 
						
							| 4 |  | exlimddvfi.4 |  | 
						
							| 5 |  | exlimddvfi.5 |  | 
						
							| 6 |  | exlimddvfi.6 |  | 
						
							| 7 | 2 | sb8e |  | 
						
							| 8 | 1 7 | sylib |  | 
						
							| 9 |  | sbsbc |  | 
						
							| 10 | 9 4 | bitri |  | 
						
							| 11 | 10 5 | sylanb |  | 
						
							| 12 | 8 3 11 6 | exlimddvf |  |