Metamath Proof Explorer


Theorem exp1

Description: Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004) (Revised by Mario Carneiro, 2-Jul-2013)

Ref Expression
Assertion exp1 AA1=A

Proof

Step Hyp Ref Expression
1 1nn 1
2 expnnval A1A1=seq1××A1
3 1 2 mpan2 AA1=seq1××A1
4 1z 1
5 seq1 1seq1××A1=×A1
6 4 5 ax-mp seq1××A1=×A1
7 3 6 eqtrdi AA1=×A1
8 fvconst2g A1×A1=A
9 1 8 mpan2 A×A1=A
10 7 9 eqtrd AA1=A