Metamath Proof Explorer


Theorem expevenpos

Description: Even powers are positive. (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Hypotheses expevenpos.mmp.1 φ A
expevenpos.mmp.2 φ N 0
expevenpos.mmp.3 φ 2 N
Assertion expevenpos φ 0 A N

Proof

Step Hyp Ref Expression
1 expevenpos.mmp.1 φ A
2 expevenpos.mmp.2 φ N 0
3 expevenpos.mmp.3 φ 2 N
4 1 ad2antrr φ p 0 2 p = N A
5 4 resqcld φ p 0 2 p = N A 2
6 simplr φ p 0 2 p = N p 0
7 4 sqge0d φ p 0 2 p = N 0 A 2
8 5 6 7 expge0d φ p 0 2 p = N 0 A 2 p
9 simpr φ p 0 2 p = N 2 p = N
10 9 oveq2d φ p 0 2 p = N A 2 p = A N
11 4 recnd φ p 0 2 p = N A
12 2nn0 2 0
13 12 a1i φ p 0 2 p = N 2 0
14 11 6 13 expmuld φ p 0 2 p = N A 2 p = A 2 p
15 10 14 eqtr3d φ p 0 2 p = N A N = A 2 p
16 8 15 breqtrrd φ p 0 2 p = N 0 A N
17 evennn02n N 0 2 N p 0 2 p = N
18 17 biimpa N 0 2 N p 0 2 p = N
19 2 3 18 syl2anc φ p 0 2 p = N
20 16 19 r19.29a φ 0 A N