Metamath Proof Explorer


Theorem exple2lt6

Description: A nonnegative integer to the power of itself is less than 6 if it is less than or equal to 2. (Contributed by AV, 16-Mar-2019)

Ref Expression
Assertion exple2lt6 N0N2NN<6

Proof

Step Hyp Ref Expression
1 nn0le2is012 N0N2N=0N=1N=2
2 id N=0N=0
3 2 2 oveq12d N=0NN=00
4 0exp0e1 00=1
5 1lt6 1<6
6 4 5 eqbrtri 00<6
7 3 6 eqbrtrdi N=0NN<6
8 id N=1N=1
9 8 8 oveq12d N=1NN=11
10 ax-1cn 1
11 exp1 111=1
12 10 11 ax-mp 11=1
13 12 5 eqbrtri 11<6
14 9 13 eqbrtrdi N=1NN<6
15 id N=2N=2
16 15 15 oveq12d N=2NN=22
17 sq2 22=4
18 4lt6 4<6
19 17 18 eqbrtri 22<6
20 16 19 eqbrtrdi N=2NN<6
21 7 14 20 3jaoi N=0N=1N=2NN<6
22 1 21 syl N0N2NN<6