Metamath Proof Explorer


Theorem f1co

Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of TakeutiZaring p. 25. (Contributed by NM, 28-May-1998) (Proof shortened by AV, 20-Sep-2024)

Ref Expression
Assertion f1co F:B1-1CG:A1-1BFG:A1-1C

Proof

Step Hyp Ref Expression
1 f1cof1 F:B1-1CG:A1-1BFG:G-1B1-1C
2 f1f G:A1-1BG:AB
3 fimacnv G:ABG-1B=A
4 2 3 syl G:A1-1BG-1B=A
5 4 adantl F:B1-1CG:A1-1BG-1B=A
6 5 eqcomd F:B1-1CG:A1-1BA=G-1B
7 f1eq2 A=G-1BFG:A1-1CFG:G-1B1-1C
8 6 7 syl F:B1-1CG:A1-1BFG:A1-1CFG:G-1B1-1C
9 1 8 mpbird F:B1-1CG:A1-1BFG:A1-1C