Metamath Proof Explorer


Theorem f1mo

Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f1mo *xxAF:ABF:A1-1B

Proof

Step Hyp Ref Expression
1 mo0sn *xxAA=yA=y
2 f102g A=F:ABF:A1-1B
3 vex yV
4 f1sn2g yVF:yBF:y1-1B
5 3 4 mpan F:yBF:y1-1B
6 feq2 A=yF:ABF:yB
7 f1eq2 A=yF:A1-1BF:y1-1B
8 6 7 imbi12d A=yF:ABF:A1-1BF:yBF:y1-1B
9 5 8 mpbiri A=yF:ABF:A1-1B
10 9 exlimiv yA=yF:ABF:A1-1B
11 10 imp yA=yF:ABF:A1-1B
12 2 11 jaoian A=yA=yF:ABF:A1-1B
13 1 12 sylanb *xxAF:ABF:A1-1B