Metamath Proof Explorer


Theorem f1ocan2fv

Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion f1ocan2fv FunFG:A1-1 ontoBXAFG-1GX=FX

Proof

Step Hyp Ref Expression
1 f1orel G:A1-1 ontoBRelG
2 dfrel2 RelGG-1-1=G
3 1 2 sylib G:A1-1 ontoBG-1-1=G
4 3 3ad2ant2 FunFG:A1-1 ontoBXAG-1-1=G
5 4 fveq1d FunFG:A1-1 ontoBXAG-1-1X=GX
6 5 fveq2d FunFG:A1-1 ontoBXAFG-1G-1-1X=FG-1GX
7 f1ocnv G:A1-1 ontoBG-1:B1-1 ontoA
8 f1ocan1fv FunFG-1:B1-1 ontoAXAFG-1G-1-1X=FX
9 7 8 syl3an2 FunFG:A1-1 ontoBXAFG-1G-1-1X=FX
10 6 9 eqtr3d FunFG:A1-1 ontoBXAFG-1GX=FX