Metamath Proof Explorer


Theorem f1ococnv1

Description: The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003)

Ref Expression
Assertion f1ococnv1 F:A1-1 ontoBF-1F=IA

Proof

Step Hyp Ref Expression
1 f1orel F:A1-1 ontoBRelF
2 dfrel2 RelFF-1-1=F
3 1 2 sylib F:A1-1 ontoBF-1-1=F
4 3 coeq2d F:A1-1 ontoBF-1F-1-1=F-1F
5 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
6 f1ococnv2 F-1:B1-1 ontoAF-1F-1-1=IA
7 5 6 syl F:A1-1 ontoBF-1F-1-1=IA
8 4 7 eqtr3d F:A1-1 ontoBF-1F=IA