Metamath Proof Explorer


Theorem f1ofveu

Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006)

Ref Expression
Assertion f1ofveu F:A1-1 ontoBCB∃!xAFx=C

Proof

Step Hyp Ref Expression
1 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
2 f1of F-1:B1-1 ontoAF-1:BA
3 1 2 syl F:A1-1 ontoBF-1:BA
4 feu F-1:BACB∃!xACxF-1
5 3 4 sylan F:A1-1 ontoBCB∃!xACxF-1
6 f1ocnvfvb F:A1-1 ontoBxACBFx=CF-1C=x
7 6 3com23 F:A1-1 ontoBCBxAFx=CF-1C=x
8 dff1o4 F:A1-1 ontoBFFnAF-1FnB
9 8 simprbi F:A1-1 ontoBF-1FnB
10 fnopfvb F-1FnBCBF-1C=xCxF-1
11 10 3adant3 F-1FnBCBxAF-1C=xCxF-1
12 9 11 syl3an1 F:A1-1 ontoBCBxAF-1C=xCxF-1
13 7 12 bitrd F:A1-1 ontoBCBxAFx=CCxF-1
14 13 3expa F:A1-1 ontoBCBxAFx=CCxF-1
15 14 reubidva F:A1-1 ontoBCB∃!xAFx=C∃!xACxF-1
16 5 15 mpbird F:A1-1 ontoBCB∃!xAFx=C