Metamath Proof Explorer


Theorem f1omptsn

Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses f1omptsn.f F=xAx
f1omptsn.r R=u|xAu=x
Assertion f1omptsn F:A1-1 ontoR

Proof

Step Hyp Ref Expression
1 f1omptsn.f F=xAx
2 f1omptsn.r R=u|xAu=x
3 sneq x=ax=a
4 3 cbvmptv xAx=aAa
5 4 eqcomi aAa=xAx
6 id u=zu=z
7 6 3 eqeqan12d u=zx=au=xz=a
8 7 cbvrexdva u=zxAu=xaAz=a
9 8 cbvabv u|xAu=x=z|aAz=a
10 9 eqcomi z|aAz=a=u|xAu=x
11 5 10 f1omptsnlem aAa:A1-1 ontoz|aAz=a
12 2 9 eqtri R=z|aAz=a
13 f1oeq3 R=z|aAz=aaAa:A1-1 ontoRaAa:A1-1 ontoz|aAz=a
14 12 13 ax-mp aAa:A1-1 ontoRaAa:A1-1 ontoz|aAz=a
15 11 14 mpbir aAa:A1-1 ontoR
16 1 4 eqtri F=aAa
17 f1oeq1 F=aAaF:A1-1 ontoRaAa:A1-1 ontoR
18 16 17 ax-mp F:A1-1 ontoRaAa:A1-1 ontoR
19 15 18 mpbir F:A1-1 ontoR