Metamath Proof Explorer


Theorem f1omptsn

Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020)

Ref Expression
Hypotheses f1omptsn.f F = x A x
f1omptsn.r R = u | x A u = x
Assertion f1omptsn F : A 1-1 onto R

Proof

Step Hyp Ref Expression
1 f1omptsn.f F = x A x
2 f1omptsn.r R = u | x A u = x
3 sneq x = a x = a
4 3 cbvmptv x A x = a A a
5 4 eqcomi a A a = x A x
6 id u = z u = z
7 6 3 eqeqan12d u = z x = a u = x z = a
8 7 cbvrexdva u = z x A u = x a A z = a
9 8 cbvabv u | x A u = x = z | a A z = a
10 9 eqcomi z | a A z = a = u | x A u = x
11 5 10 f1omptsnlem a A a : A 1-1 onto z | a A z = a
12 2 9 eqtri R = z | a A z = a
13 f1oeq3 R = z | a A z = a a A a : A 1-1 onto R a A a : A 1-1 onto z | a A z = a
14 12 13 ax-mp a A a : A 1-1 onto R a A a : A 1-1 onto z | a A z = a
15 11 14 mpbir a A a : A 1-1 onto R
16 1 4 eqtri F = a A a
17 f1oeq1 F = a A a F : A 1-1 onto R a A a : A 1-1 onto R
18 16 17 ax-mp F : A 1-1 onto R a A a : A 1-1 onto R
19 15 18 mpbir F : A 1-1 onto R