Metamath Proof Explorer


Theorem f1omvdcnv

Description: A permutation and its inverse move the same points. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion f1omvdcnv F:A1-1 ontoAdomF-1I=domFI

Proof

Step Hyp Ref Expression
1 f1ocnvfvb F:A1-1 ontoAxAxAFx=xF-1x=x
2 1 3anidm23 F:A1-1 ontoAxAFx=xF-1x=x
3 2 bicomd F:A1-1 ontoAxAF-1x=xFx=x
4 3 necon3bid F:A1-1 ontoAxAF-1xxFxx
5 4 rabbidva F:A1-1 ontoAxA|F-1xx=xA|Fxx
6 f1ocnv F:A1-1 ontoAF-1:A1-1 ontoA
7 f1ofn F-1:A1-1 ontoAF-1FnA
8 fndifnfp F-1FnAdomF-1I=xA|F-1xx
9 6 7 8 3syl F:A1-1 ontoAdomF-1I=xA|F-1xx
10 f1ofn F:A1-1 ontoAFFnA
11 fndifnfp FFnAdomFI=xA|Fxx
12 10 11 syl F:A1-1 ontoAdomFI=xA|Fxx
13 5 9 12 3eqtr4d F:A1-1 ontoAdomF-1I=domFI