Metamath Proof Explorer


Theorem f1osng

Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013)

Ref Expression
Assertion f1osng AVBWAB:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 sneq a=Aa=A
2 1 f1oeq2d a=Aab:a1-1 ontobab:A1-1 ontob
3 opeq1 a=Aab=Ab
4 3 sneqd a=Aab=Ab
5 4 f1oeq1d a=Aab:A1-1 ontobAb:A1-1 ontob
6 2 5 bitrd a=Aab:a1-1 ontobAb:A1-1 ontob
7 sneq b=Bb=B
8 7 f1oeq3d b=BAb:A1-1 ontobAb:A1-1 ontoB
9 opeq2 b=BAb=AB
10 9 sneqd b=BAb=AB
11 10 f1oeq1d b=BAb:A1-1 ontoBAB:A1-1 ontoB
12 8 11 bitrd b=BAb:A1-1 ontobAB:A1-1 ontoB
13 vex aV
14 vex bV
15 13 14 f1osn ab:a1-1 ontob
16 6 12 15 vtocl2g AVBWAB:A1-1 ontoB