Metamath Proof Explorer


Theorem f1ss

Description: A function that is one-to-one is also one-to-one on some superset of its codomain. (Contributed by Mario Carneiro, 12-Jan-2013)

Ref Expression
Assertion f1ss F:A1-1BBCF:A1-1C

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 fss F:ABBCF:AC
3 1 2 sylan F:A1-1BBCF:AC
4 df-f1 F:A1-1BF:ABFunF-1
5 4 simprbi F:A1-1BFunF-1
6 5 adantr F:A1-1BBCFunF-1
7 df-f1 F:A1-1CF:ACFunF-1
8 3 6 7 sylanbrc F:A1-1BBCF:A1-1C