Metamath Proof Explorer


Theorem f1ssr

Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Assertion f1ssr F:A1-1BranFCF:A1-1C

Proof

Step Hyp Ref Expression
1 f1fn F:A1-1BFFnA
2 1 adantr F:A1-1BranFCFFnA
3 simpr F:A1-1BranFCranFC
4 df-f F:ACFFnAranFC
5 2 3 4 sylanbrc F:A1-1BranFCF:AC
6 df-f1 F:A1-1BF:ABFunF-1
7 6 simprbi F:A1-1BFunF-1
8 7 adantr F:A1-1BranFCFunF-1
9 df-f1 F:A1-1CF:ACFunF-1
10 5 8 9 sylanbrc F:A1-1BranFCF:A1-1C