Metamath Proof Explorer


Theorem faclbnd2

Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005)

Ref Expression
Assertion faclbnd2 N02N2N!

Proof

Step Hyp Ref Expression
1 sq2 22=4
2 2t2e4 22=4
3 1 2 eqtr4i 22=22
4 3 oveq2i 2N+122=2N+122
5 2cn 2
6 expp1 2N02N+1=2N2
7 5 6 mpan N02N+1=2N2
8 7 oveq1d N02N+122=2N222
9 4 8 eqtrid N02N+122=2N222
10 expcl 2N02N
11 5 10 mpan N02N
12 2cnne0 220
13 divmuldiv 2N22202202N222=2N222
14 12 12 13 mpanr12 2N22N222=2N222
15 11 5 14 sylancl N02N222=2N222
16 2div2e1 22=1
17 16 oveq2i 2N222=2N21
18 11 halfcld N02N2
19 18 mulridd N02N21=2N2
20 17 19 eqtrid N02N222=2N2
21 9 15 20 3eqtr2rd N02N2=2N+122
22 2nn0 20
23 faclbnd 20N02N+122N!
24 22 23 mpan N02N+122N!
25 2re 2
26 peano2nn0 N0N+10
27 reexpcl 2N+102N+1
28 25 26 27 sylancr N02N+1
29 faccl N0N!
30 29 nnred N0N!
31 4re 4
32 1 31 eqeltri 22
33 4pos 0<4
34 33 1 breqtrri 0<22
35 32 34 pm3.2i 220<22
36 ledivmul 2N+1N!220<222N+122N!2N+122N!
37 35 36 mp3an3 2N+1N!2N+122N!2N+122N!
38 28 30 37 syl2anc N02N+122N!2N+122N!
39 24 38 mpbird N02N+122N!
40 21 39 eqbrtrd N02N2N!