Metamath Proof Explorer


Theorem faclbnd3

Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005)

Ref Expression
Assertion faclbnd3 M0N0MNMMN!

Proof

Step Hyp Ref Expression
1 elnn0 M0MM=0
2 nnre MM
3 2 adantr MN0M
4 nnge1 M1M
5 4 adantr MN01M
6 nn0z N0N
7 6 adantl MN0N
8 uzid NNN
9 peano2uz NNN+1N
10 7 8 9 3syl MN0N+1N
11 3 5 10 leexp2ad MN0MNMN+1
12 nnnn0 MM0
13 faclbnd M0N0MN+1MMN!
14 12 13 sylan MN0MN+1MMN!
15 nn0re M0M
16 reexpcl MN0MN
17 15 16 sylan M0N0MN
18 peano2nn0 N0N+10
19 reexpcl MN+10MN+1
20 15 18 19 syl2an M0N0MN+1
21 reexpcl MM0MM
22 15 21 mpancom M0MM
23 faccl N0N!
24 23 nnred N0N!
25 remulcl MMN!MMN!
26 22 24 25 syl2an M0N0MMN!
27 letr MNMN+1MMN!MNMN+1MN+1MMN!MNMMN!
28 17 20 26 27 syl3anc M0N0MNMN+1MN+1MMN!MNMMN!
29 12 28 sylan MN0MNMN+1MN+1MMN!MNMMN!
30 11 14 29 mp2and MN0MNMMN!
31 elnn0 N0NN=0
32 0exp N0N=0
33 0le1 01
34 32 33 eqbrtrdi N0N1
35 oveq2 N=00N=00
36 0exp0e1 00=1
37 1le1 11
38 36 37 eqbrtri 001
39 35 38 eqbrtrdi N=00N1
40 34 39 jaoi NN=00N1
41 31 40 sylbi N00N1
42 1nn 1
43 nnmulcl 1N!1N!
44 42 23 43 sylancr N01N!
45 44 nnge1d N011N!
46 0re 0
47 reexpcl 0N00N
48 46 47 mpan N00N
49 1re 1
50 remulcl 1N!1N!
51 49 24 50 sylancr N01N!
52 letr 0N11N!0N111N!0N1N!
53 49 52 mp3an2 0N1N!0N111N!0N1N!
54 48 51 53 syl2anc N00N111N!0N1N!
55 41 45 54 mp2and N00N1N!
56 55 adantl M=0N00N1N!
57 oveq1 M=0MN=0N
58 oveq12 M=0M=0MM=00
59 58 anidms M=0MM=00
60 59 36 eqtrdi M=0MM=1
61 60 oveq1d M=0MMN!=1N!
62 57 61 breq12d M=0MNMMN!0N1N!
63 62 adantr M=0N0MNMMN!0N1N!
64 56 63 mpbird M=0N0MNMMN!
65 30 64 jaoian MM=0N0MNMMN!
66 1 65 sylanb M0N0MNMMN!