Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | faclbnd3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | nnre | |
|
3 | 2 | adantr | |
4 | nnge1 | |
|
5 | 4 | adantr | |
6 | nn0z | |
|
7 | 6 | adantl | |
8 | uzid | |
|
9 | peano2uz | |
|
10 | 7 8 9 | 3syl | |
11 | 3 5 10 | leexp2ad | |
12 | nnnn0 | |
|
13 | faclbnd | |
|
14 | 12 13 | sylan | |
15 | nn0re | |
|
16 | reexpcl | |
|
17 | 15 16 | sylan | |
18 | peano2nn0 | |
|
19 | reexpcl | |
|
20 | 15 18 19 | syl2an | |
21 | reexpcl | |
|
22 | 15 21 | mpancom | |
23 | faccl | |
|
24 | 23 | nnred | |
25 | remulcl | |
|
26 | 22 24 25 | syl2an | |
27 | letr | |
|
28 | 17 20 26 27 | syl3anc | |
29 | 12 28 | sylan | |
30 | 11 14 29 | mp2and | |
31 | elnn0 | |
|
32 | 0exp | |
|
33 | 0le1 | |
|
34 | 32 33 | eqbrtrdi | |
35 | oveq2 | |
|
36 | 0exp0e1 | |
|
37 | 1le1 | |
|
38 | 36 37 | eqbrtri | |
39 | 35 38 | eqbrtrdi | |
40 | 34 39 | jaoi | |
41 | 31 40 | sylbi | |
42 | 1nn | |
|
43 | nnmulcl | |
|
44 | 42 23 43 | sylancr | |
45 | 44 | nnge1d | |
46 | 0re | |
|
47 | reexpcl | |
|
48 | 46 47 | mpan | |
49 | 1re | |
|
50 | remulcl | |
|
51 | 49 24 50 | sylancr | |
52 | letr | |
|
53 | 49 52 | mp3an2 | |
54 | 48 51 53 | syl2anc | |
55 | 41 45 54 | mp2and | |
56 | 55 | adantl | |
57 | oveq1 | |
|
58 | oveq12 | |
|
59 | 58 | anidms | |
60 | 59 36 | eqtrdi | |
61 | 60 | oveq1d | |
62 | 57 61 | breq12d | |
63 | 62 | adantr | |
64 | 56 63 | mpbird | |
65 | 30 64 | jaoian | |
66 | 1 65 | sylanb | |