Description: Lemma for faclbnd4 . Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 to antecedents. (Contributed by NM, 23-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | faclbnd4lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | 1 | oveq2d | |
3 | id | |
|
4 | oveq1 | |
|
5 | 3 4 | oveq12d | |
6 | 5 | oveq2d | |
7 | 6 | oveq1d | |
8 | 2 7 | breq12d | |
9 | oveq1 | |
|
10 | 9 | oveq2d | |
11 | oveq1 | |
|
12 | 3 11 | oveq12d | |
13 | 12 | oveq2d | |
14 | 13 | oveq1d | |
15 | 10 14 | breq12d | |
16 | 8 15 | imbi12d | |
17 | oveq2 | |
|
18 | 17 | oveq1d | |
19 | oveq1 | |
|
20 | 19 | oveq2d | |
21 | oveq2 | |
|
22 | 21 | oveq2d | |
23 | 20 22 | oveq12d | |
24 | 23 | oveq1d | |
25 | 18 24 | breq12d | |
26 | oveq1 | |
|
27 | 26 | oveq2d | |
28 | 27 | oveq1d | |
29 | 26 | oveq1d | |
30 | 29 | oveq2d | |
31 | 26 | oveq2d | |
32 | 31 | oveq2d | |
33 | 30 32 | oveq12d | |
34 | 33 | oveq1d | |
35 | 28 34 | breq12d | |
36 | 25 35 | imbi12d | |
37 | oveq1 | |
|
38 | 37 | oveq1d | |
39 | 37 | oveq2d | |
40 | 38 39 | oveq12d | |
41 | fvoveq1 | |
|
42 | 41 | oveq2d | |
43 | 40 42 | breq12d | |
44 | oveq1 | |
|
45 | oveq2 | |
|
46 | 44 45 | oveq12d | |
47 | fveq2 | |
|
48 | 47 | oveq2d | |
49 | 46 48 | breq12d | |
50 | 43 49 | imbi12d | |
51 | 1nn | |
|
52 | 51 | elimel | |
53 | 1nn0 | |
|
54 | 53 | elimel | |
55 | 53 | elimel | |
56 | 52 54 55 | faclbnd4lem1 | |
57 | 16 36 50 56 | dedth3h | |