Metamath Proof Explorer


Theorem faclbnd4lem2

Description: Lemma for faclbnd4 . Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 to antecedents. (Contributed by NM, 23-Dec-2005)

Ref Expression
Assertion faclbnd4lem2 M0K0NN1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!

Proof

Step Hyp Ref Expression
1 oveq1 M=ifM0M1MN1=ifM0M1N1
2 1 oveq2d M=ifM0M1N1KMN1=N1KifM0M1N1
3 id M=ifM0M1M=ifM0M1
4 oveq1 M=ifM0M1M+K=ifM0M1+K
5 3 4 oveq12d M=ifM0M1MM+K=ifM0M1ifM0M1+K
6 5 oveq2d M=ifM0M12K2MM+K=2K2ifM0M1ifM0M1+K
7 6 oveq1d M=ifM0M12K2MM+KN1!=2K2ifM0M1ifM0M1+KN1!
8 2 7 breq12d M=ifM0M1N1KMN12K2MM+KN1!N1KifM0M1N12K2ifM0M1ifM0M1+KN1!
9 oveq1 M=ifM0M1MN=ifM0M1N
10 9 oveq2d M=ifM0M1NK+1MN=NK+1ifM0M1N
11 oveq1 M=ifM0M1M+K+1=ifM0M1+K+1
12 3 11 oveq12d M=ifM0M1MM+K+1=ifM0M1ifM0M1+K+1
13 12 oveq2d M=ifM0M12K+12MM+K+1=2K+12ifM0M1ifM0M1+K+1
14 13 oveq1d M=ifM0M12K+12MM+K+1N!=2K+12ifM0M1ifM0M1+K+1N!
15 10 14 breq12d M=ifM0M1NK+1MN2K+12MM+K+1N!NK+1ifM0M1N2K+12ifM0M1ifM0M1+K+1N!
16 8 15 imbi12d M=ifM0M1N1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!N1KifM0M1N12K2ifM0M1ifM0M1+KN1!NK+1ifM0M1N2K+12ifM0M1ifM0M1+K+1N!
17 oveq2 K=ifK0K1N1K=N1ifK0K1
18 17 oveq1d K=ifK0K1N1KifM0M1N1=N1ifK0K1ifM0M1N1
19 oveq1 K=ifK0K1K2=ifK0K12
20 19 oveq2d K=ifK0K12K2=2ifK0K12
21 oveq2 K=ifK0K1ifM0M1+K=ifM0M1+ifK0K1
22 21 oveq2d K=ifK0K1ifM0M1ifM0M1+K=ifM0M1ifM0M1+ifK0K1
23 20 22 oveq12d K=ifK0K12K2ifM0M1ifM0M1+K=2ifK0K12ifM0M1ifM0M1+ifK0K1
24 23 oveq1d K=ifK0K12K2ifM0M1ifM0M1+KN1!=2ifK0K12ifM0M1ifM0M1+ifK0K1N1!
25 18 24 breq12d K=ifK0K1N1KifM0M1N12K2ifM0M1ifM0M1+KN1!N1ifK0K1ifM0M1N12ifK0K12ifM0M1ifM0M1+ifK0K1N1!
26 oveq1 K=ifK0K1K+1=ifK0K1+1
27 26 oveq2d K=ifK0K1NK+1=NifK0K1+1
28 27 oveq1d K=ifK0K1NK+1ifM0M1N=NifK0K1+1ifM0M1N
29 26 oveq1d K=ifK0K1K+12=ifK0K1+12
30 29 oveq2d K=ifK0K12K+12=2ifK0K1+12
31 26 oveq2d K=ifK0K1ifM0M1+K+1=ifM0M1+ifK0K1+1
32 31 oveq2d K=ifK0K1ifM0M1ifM0M1+K+1=ifM0M1ifM0M1+ifK0K1+1
33 30 32 oveq12d K=ifK0K12K+12ifM0M1ifM0M1+K+1=2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1
34 33 oveq1d K=ifK0K12K+12ifM0M1ifM0M1+K+1N!=2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1N!
35 28 34 breq12d K=ifK0K1NK+1ifM0M1N2K+12ifM0M1ifM0M1+K+1N!NifK0K1+1ifM0M1N2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1N!
36 25 35 imbi12d K=ifK0K1N1KifM0M1N12K2ifM0M1ifM0M1+KN1!NK+1ifM0M1N2K+12ifM0M1ifM0M1+K+1N!N1ifK0K1ifM0M1N12ifK0K12ifM0M1ifM0M1+ifK0K1N1!NifK0K1+1ifM0M1N2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1N!
37 oveq1 N=ifNN1N1=ifNN11
38 37 oveq1d N=ifNN1N1ifK0K1=ifNN11ifK0K1
39 37 oveq2d N=ifNN1ifM0M1N1=ifM0M1ifNN11
40 38 39 oveq12d N=ifNN1N1ifK0K1ifM0M1N1=ifNN11ifK0K1ifM0M1ifNN11
41 fvoveq1 N=ifNN1N1!=ifNN11!
42 41 oveq2d N=ifNN12ifK0K12ifM0M1ifM0M1+ifK0K1N1!=2ifK0K12ifM0M1ifM0M1+ifK0K1ifNN11!
43 40 42 breq12d N=ifNN1N1ifK0K1ifM0M1N12ifK0K12ifM0M1ifM0M1+ifK0K1N1!ifNN11ifK0K1ifM0M1ifNN112ifK0K12ifM0M1ifM0M1+ifK0K1ifNN11!
44 oveq1 N=ifNN1NifK0K1+1=ifNN1ifK0K1+1
45 oveq2 N=ifNN1ifM0M1N=ifM0M1ifNN1
46 44 45 oveq12d N=ifNN1NifK0K1+1ifM0M1N=ifNN1ifK0K1+1ifM0M1ifNN1
47 fveq2 N=ifNN1N!=ifNN1!
48 47 oveq2d N=ifNN12ifK0K1+12ifM0M1ifM0M1+ifK0K1+1N!=2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1ifNN1!
49 46 48 breq12d N=ifNN1NifK0K1+1ifM0M1N2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1N!ifNN1ifK0K1+1ifM0M1ifNN12ifK0K1+12ifM0M1ifM0M1+ifK0K1+1ifNN1!
50 43 49 imbi12d N=ifNN1N1ifK0K1ifM0M1N12ifK0K12ifM0M1ifM0M1+ifK0K1N1!NifK0K1+1ifM0M1N2ifK0K1+12ifM0M1ifM0M1+ifK0K1+1N!ifNN11ifK0K1ifM0M1ifNN112ifK0K12ifM0M1ifM0M1+ifK0K1ifNN11!ifNN1ifK0K1+1ifM0M1ifNN12ifK0K1+12ifM0M1ifM0M1+ifK0K1+1ifNN1!
51 1nn 1
52 51 elimel ifNN1
53 1nn0 10
54 53 elimel ifK0K10
55 53 elimel ifM0M10
56 52 54 55 faclbnd4lem1 ifNN11ifK0K1ifM0M1ifNN112ifK0K12ifM0M1ifM0M1+ifK0K1ifNN11!ifNN1ifK0K1+1ifM0M1ifNN12ifK0K1+12ifM0M1ifM0M1+ifK0K1+1ifNN1!
57 16 36 50 56 dedth3h M0K0NN1KMN12K2MM+KN1!NK+1MN2K+12MM+K+1N!