Metamath Proof Explorer


Theorem fbflim

Description: A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis fbflim.3 F = X filGen B
Assertion fbflim J TopOn X B fBas X A J fLim F A X x J A x y B y x

Proof

Step Hyp Ref Expression
1 fbflim.3 F = X filGen B
2 fgcl B fBas X X filGen B Fil X
3 1 2 eqeltrid B fBas X F Fil X
4 flimopn J TopOn X F Fil X A J fLim F A X x J A x x F
5 3 4 sylan2 J TopOn X B fBas X A J fLim F A X x J A x x F
6 toponss J TopOn X x J x X
7 6 ad4ant14 J TopOn X B fBas X A X x J x X
8 1 eleq2i x F x X filGen B
9 elfg B fBas X x X filGen B x X y B y x
10 9 ad3antlr J TopOn X B fBas X A X x J x X filGen B x X y B y x
11 8 10 syl5bb J TopOn X B fBas X A X x J x F x X y B y x
12 7 11 mpbirand J TopOn X B fBas X A X x J x F y B y x
13 12 imbi2d J TopOn X B fBas X A X x J A x x F A x y B y x
14 13 ralbidva J TopOn X B fBas X A X x J A x x F x J A x y B y x
15 14 pm5.32da J TopOn X B fBas X A X x J A x x F A X x J A x y B y x
16 5 15 bitrd J TopOn X B fBas X A J fLim F A X x J A x y B y x